

National Water Availability and Use Pilot Program

Excel® Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap™

Chapter 1 of

Section F, Groundwater, of Book 4, Hydrologic Analysis and Interpretation

U.S. Department of the Interior

U.S. Geological Survey

National Water Availability and Use Pilot Program

Excel[®] Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap[™]

By Fred D Tillman

Chapter 1 of

Section F, Groundwater, of Book 4, Hydrologic Analysis and Interpretation

Techniques and Methods 4-F1

U.S. Department of the Interior

KEN SALAZAR, Secretary

U.S. Geological Survey

Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2009

This report and any updates to it are available online at: http://pubs.usgs.gov/tm/tm4f1/

For product and ordering information:

World Wide Web: http://www.usgs.gov/pubprod

Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth,

its natural and living resources, natural hazards, and the environment:

World Wide Web: http://www.usgs.gov

Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Tillman, Fred D, 2009, Excel® spreadsheet tools for analyzing groundwater level records and displaying information in ArcMap™: U.S. Geological Survey Techniques and Methods 4-F1, 59 p. [http://pubs.usgs.gov/tm/tm4f1/]

Cataloging-in-Publication data are on file with the Library of Congress (URL http://www.loc.gov/).

Produced in the Western Region, Menlo Park, California Manuscript approved for publication, June 9, 2009 Text edited by Peter H. Stauffer Layout and design by Stephen L. Scott

FRONT COVER

Illustration of the path from raw water-level data to useful groundwater information.

Contents

Abstract	
Introduction	
AcknowledgmentsData Requirements	
Spreadsheet Tools	
Well Analyses.xlsm	
vveii_Anaiyses.xism	
observation stats	
create_xyz_worksheet	
Create_xyz_worksneet	
= 4.4	•
List of Site Identification Numbers	
Start and End Dates of Observation	
Wells that Span a Time Period	
Summary XY Data Worksheet	
Well_Hydrographs.xlsm	
makeExcelHydrographs	
makePDFfromChart	
Displaying Results in ArcMap	
Summary and Conclusions	
References Cited	
Appendix. Program Listings	- 13
Figures 1. Example of <i>original data worksheet</i> for use with Excel® tools for analyzing	
water-level records	2
User-interface window in Microsoft Excel® for selecting tools for analyzing water-level records	4
 User-interface window in Microsoft Excel® for selecting the worksheet containing the water-level data (original data worksheet) and specifying whether the observations are depth to groundwater or water-level altitude	5
Example output of observation_stats program presenting summary information about water-level dataset	7
5. User-interface window in Microsoft Excel® for selecting data subsets for the water-level analysis tool	7
6. User-interface window in Microsoft Excel® for selecting options for retaining or removing water-level observations on the basis of water-level status	
7. User-interface window in Microsoft Excel® for selecting worksheet containing a list of site identification numbers to be included in a subset of water-level data	
8. Example of a list of site identification numbers used to create a subset of water-level data water-level data	
9. User-interface window in Microsoft Excel® for selecting earliest and latest observation dates for creating a subset of water-level data	
10. User-interface window in Microsoft Excel® for selecting earliest and latest water-level observation dates that define the time span of interest for creating a subset of water-level data	

11. User-interface window in Microsoft Excel® for selecting axes options for well hydrographs	10
12. Example hydrographs produced by makeExcelHydrographs tool for water-level data gven as depth to groundwater (top panel) and water-level altitude (bottom panel)	12
Tables	
Required location of data on worksheet for data used by Visual Basic for Applications tools for analyzing groundwater data and displaying in geographic information systems	3
Summary information tabulated by create_xyz_worksheet tool from data in a subset data worksheet	

Conversion Factors and Datum

Multiply	Multiply By To obtain		
	Length		
foot (ft)	0.3048	meter (m)	

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88). Horizontal coordinate information is referenced to the North American Datum of 1927 (NAD 27). Altitude, as used in this report, refers to distance above the vertical datum.

Excel[®] Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap[™]

By Fred D Tillman

Abstract

When beginning hydrologic investigations, a first action is often to gather existing sources of well information, compile this information into a single dataset, and visualize this information in a geographic information system (GIS) environment. This report presents tools (macros) developed using Visual Basic for Applications (VBA) for Microsoft Excel® 2007 to assist in these tasks. One tool combines multiple datasets into a single worksheet and formats the resulting data for use by the other tools. A second tool produces summary information about the dataset, such as a list of unique site identification numbers, the number of water-level observations for each, and a table of the number of sites with a listed number of waterlevel observations. A third tool creates subsets of the original dataset based on user-specified options and produces a worksheet with water-level information for each well in the subset, including the average and standard deviation of water-level observations and maximum decline and rise in water levels between any two observations, among other information. This water-level information worksheet can be imported directly into ESRI® ArcMapTM as an "XY Data" file, and each of the fields of summary well information can be used for custom display. A separate set of VBA tools distributed in an additional Excel workbook creates hydrograph charts of each of the wells in the data subset produced by the aforementioned tools and produces portable document format (PDF) versions of the hydrograph charts. These PDF hydrographs can be hyperlinked to well locations in ArcMapTM or other GIS applications.

Introduction

The U.S. Geological Survey (USGS) Water Availability and Use Pilot Program Southwest Alluvial Basins project is developing new methods for analyzing and presenting groundwater conditions using existing datasets

(Tillman and others, 2007; Tillman and others, 2008). An integral part of this project is to combine datasets from multiple sources, develop understanding of the scope and variability of the resulting dataset, produce subsets of the data based on criteria of interest, and present the data in a geographic information system (GIS) environment to aid in visualization of temporal water-level changes. Each of these steps involves the analysis of large amounts of water-level data, and Visual Basic for Applications (VBA) macros (programs) were written to aid in rapidly processing raw datasets into usable GIS information. Presenting well information in a GIS environment is useful in helping to understand the distribution of temporal water-level changes. The purpose of this report is to document the VBA macros distributed in the Well Analyses.xlsm and Well Hydrograph.xlsm workbooks. The report describes the data requirements and basic instructions for each tool. The tools described in this report are designed to be accessible by anyone with Excel® 2007, easy to use, and useful in producing GIS input files from raw data from the USGS National Water Information System (NWIS) and other databases. The capabilities of the tools are demonstrated using data from alluvial basins in Arizona.

Acknowledgments

Development of the tools described in this report was funded by the USGS National Water Availability and Use Pilot Program. The Arizona Department of Water Resources provided groundwater data for use in developing and testing these macros. Jeff Cordova of the USGS Arizona Water Science Center provided technical review at various stages in the development of this project.

Data Requirements

Macros created for analyzing water-level records and producing GIS files were written to maximize flexibility for the user, but with certain requirements. All macros documented in this report require well data to be in a specifically formatted original data worksheet (fig. 1 and table 1). All data must begin on row 22 of the worksheet, and each row must contain a site identification number in the column specified. If multiple datasets are to be combined, the data from each dataset must be placed on the same worksheet, one directly after the other with no intervening blank rows. Some data are required by all VBA tools in this report, such as site identification number, longitude and latitude of the well location, and water-level observations with observation dates (table 1). Nonrequired data are used in the GIS attribute table or in the header of well hydrographs. If data are not available for any of the nonrequired fields, then the fields should be blank. Other data may be included on the worksheet after column P up to column CV (column 100) and will be copied automatically to all subsequent data subset worksheets. Column H may contain either depth to groundwater or water-level altitude data. Owing to limitations within Excel, no water-level observations are allowed prior to January 1, 1900. Allowable formats for water-level

observation dates include the default output formats for NWIS-GWSI of yyyymmdd or yyyymm or any Excel-recognizable date format. To determine if a date is in an Excelrecognizable format, open the data in Excel, right-click on the date cell, select Format Cells and change the format to Number. If the date appears as an integer number, then it was previously in an Excel-recognizable date format. If the date does not change to an integer number, but instead appears in the same format as before the format change, then the date is in a text format not recognizable in Excel. To correct this, copy and paste all dates to a text editor, then copy them from the text editor and paste them back into Excel. All data must be sorted first by site identification number (smallest to largest), then by date of observation (earliest to latest). This and other formatting is performed in the combine format datasets tool described below. The VBA programs were written to run in Microsoft Excel 2007 and are thus distributed in the "*.xlsm" format. The expansion of Excel 2007 to allow as many as 1,048,576 rows of data permits the tools described in this report to be run on very large datasets.

A	В	С	D	E	F	G	Н	L	J	K	L	M	N	0
1 RDB file cre	eated by NWIS gwtab	le program												
2														
	DE DESCRIPTION													
4														
	ource agency code													
	ite ID (station numbe	r)												
	ocal well number													
	atitude NAD83 in dec													
	ongitude NAD83 in de													
	Vater-level measuren													
	Vater-level below LSE)												
	Vater-level status													
	ltitude of land surface													
	Altitude Datum													
	Primary use of water													
6 12 C027														
7 13 C028	Well depth													
8														
9														
20														
1 C004	C001	C012	C909	C910	C036	C235	C237	C238	C016	C022		C027	C028	
2 USGS		D-13-14 29BDA	32.27479755	-110.9364808		01/01/1971	117			NGVD29	Н	-9999	200	
3 USGS	311739111132601		32.2942416	-111.2245465		12/28/1961	404.18			NGVD29		-9999	-9999	
4 USGS	311739111132601		32.2942416	-111.2245465		12/24/1962				NGVD29		-9999	-9999	
5 USGS	311739111132601		32.2942416	-111.2245465		12/20/1963				NGVD29		-9999	-9999	
6 USGS	311739111132601		32.2942416	-111.2245465		12/23/1964				NGVD29		-9999	-9999	
7 USGS	311739111132601		32.2942416	-111.2245465		12/23/1966	425.9			NGVD29		-9999	-9999	
8 USGS	311739111132601		32.2942416	-111.2245465		12/27/1967				NGVD29		-9999	-9999	
9 USGS	311739111132601		32.2942416	-111.2245465		12/28/1969	434.2			NGVD29		-9999	-9999	
0 USGS	311739111132601		32.2942416	-111.2245465		01/15/1970				NGVD29		-9999	-9999	
1 USGS	311739111132601		32.2942416	-111.2245465		03/26/1971	443.1			NGVD29		-9999		
2 USGS	312544111212401		31.42898229	-111.3573211		05/19/1981	14.2			NGVD29	S	80		
3 USGS	312547111211401		31.42981562	-111.3545433		05/19/1981	102.4			NGVD29	Н	160		
4 USGS	312547111211401		31.42981562	-111.3545433		12/12/1984	11.7			NGVD29	Н	160		
5 USGS	312600111200301		31.43342678	-111.3348204		05/19/1981	140.5			NGVD29	S	200		
6 USGS	312656111142801		31.44898255	-111.2417617		05/20/1981	7.3			NGVD29	U	10		
7 USGS	312743111201701		31.46203698	-111.3387096		05/19/1981	274.5			NGVD29	S	300		
8 USGS	312823111213501		31.47314759	-111.3603771		05/19/1981	209.8			NGVD29	S	-9999	-9999	
9 USGS	312823111213501		31.47314759	-111.3603771		12/12/1984	203.8			NGVD29	S	-9999	-9999	
USGS	312826111305201		31.47397982	-111.5151049		03/24/1981	125.8			NGVD29	S	-9999		
USGS	312826111305201		31.47397982	-111.5151049		11/27/1984	72.2			NGVD29	S	-9999		
12 USGS	312827111303301	D-22-08 34ARD	31.47425761	-111.509827	NAD27	01/10/1964	195.2	1	3450	NGVD29	U	430	430	

Figure 1. Example of original data worksheet for use with Excel® tools for analyzing water-level records.

Table 1. Required location of data on worksheet for data used by Visual Basic for Applications tools for analyzing groundwater data and displaying in geographic information systems.

[Required information is shaded red. Data used in the hydrograph-creation tool described in this report, but not required, are shaded	
orange.]	

Data	Worksheet Column	NWIS Code	Example
Source agency code	A	C004	USGS
Site ID (station number)	В	C001	312544111212401
Local well number	C	C012	D-23-10 18ACA
Latitude	D	C909	31.42898
Longitude	Е	C910	-111.357
Lat/Long Datum	F	C036	NAD83
Water-level measurement date	G	C235	04/01/1957
Water-level below land surface	Н	C237 OR	260.00 OR
OR water-level altitude	П	computed	2890.00
Water-level status	I	C238	P
Altitude of land surface	J	C016	3150.00
Altitude datum	K	C022	NGVD29
Primary use of water	L	C024	U
Hole depth	M	C027	358.00
Well depth	N	C028	320.00

Spreadsheet Tools

Two workbooks are described in this report, Well_Analyses.xlsm and Well_Hydrographs.xlsm. The Well_Analyses.xlsm workbook contains three tools—one to combine well data from multiple sources and format the resulting combined dataset, one to provide summary information on the dataset, and one to pull a user-selected subset of wells from the dataset and produce a file for use within ArcMapTM for projecting well locations. The Well-Hydrographs.xlsm workbook contains two tools: one that creates hydrographs and one that produces PDF-formatted versions of these hydrographs to link with well locations in ArcMap. The two workbooks are discussed separately below, with each tool described in detail.

To provide clarity, from this point forward in this report **workbooks** will be emphasized with bold text and *worksheets* will be formatted in italics. Three specific water-level data worksheets used frequently in following sections are: *original data worksheet* containing the original data from NWIS or other databases; *formatted data worksheet* containing a copy of the original data worksheet that has been combined (if multiple data sources were present in the original data worksheet), sorted, and formatted for use with other macros in this report; and

subset data worksheet containing a subset of the formatted data worksheet based on user-defined choices (for example, observations that fall within a user-defined date range).

The macros described in this report are VBA macros, and therefore macros must be enabled in Excel for them to run (see Excel help for more information). To run the tools in Excel 2007, select the "View" menu tab, select "Macros," then "View Macros," or use keystrokes Alt + F8. This brings up a window with a list of the publicly visible macros in the spreadsheet (fig. 2). Select a macro from the list, then click "Run." The user may copy waterlevel data into a blank worksheet in the Well Analyses. xlsm or Well Hydrographs.xlsm workbooks, copy a data worksheet from another workbook into the Well Analyses.xlsm or Well Hydrographs.xlsm workbooks, or run the macros from a separate workbook as long as the workbook containing the macros remains open. If the data are kept in a separate workbook, then the macros should be run from within this workbook by either of the methods described above.

To optimize speed for large datasets, screen updating is turned off during execution of the macros in these workbooks. While running, only the status bar at the bottom of the Excel window will indicate progress. Upon

completion of the macro, a message box will appear that informs the user of the elapsed time of the macro run.

Well_Analyses.xlsm

The Well_Analyses.xlsm workbook contains three publicly visible macros (there are others that are not visible that work behind the scenes): combine_format_datasets, observation_stats, and create_xyz_worksheet. These tools are written to combine water-level datasets, summarize information from a water-level dataset, and create an input file of the summary information capable of being projected in ArcMap. Each macro is discussed in detail below.

Combine_format_datasets

This tool was designed to combine water-level data from multiple data sources and format the resulting dataset for use by other macros in the workbook. This functionality is particularly useful when there are multiple

sources for water-level data in the area under investigation. For example, in the state of Arizona, much of the recent water-level information is collected and distributed by the Arizona Department of Water Resources, while the USGS NWIS-GWSI system contains most of the older data as well as recent data in areas where USGS projects are ongoing. Other site-specific water-level information may also be available from other entities, including cities, counties, and other government agencies. The first task when compiling data from multiple sources is often to combine the datasets for further use.

When using this tool, the user is first prompted for the worksheet containing the water-level data to be combined and formatted (fig. 3). The worksheet selected should be the one containing all of the original data. Data from all datasets should be present in this same *original data worksheet*. The location of data in this worksheet is specified by the rules described in the Data Requirements section, but the sequential order of the multiple datasets to be combined is irrelevant, as long as there are no blank rows between the multiple datasets.

The combine_format_datasets tool first copies this *original data worksheet* to a new worksheet with the

Figure 2. User-interface window in Microsoft Excel® for selecting tools for analyzing water-level records.

original data worksheet name plus "_FMT". The macro may fail if there are more than 31 total characters in the worksheet name. If this occurs, shorten the name of the original data worksheet and run the macro again. By working only on a copy of the original dataset, all original data are left unaltered. The macro searches through each row of sequential data, deleting rows that have no waterlevel observation or observation date. Columns that contain the site identification number, hole depth, well depth, and well altitude are all formatted as numbers. All blank cells within the hole depth, well depth, and well altitude fields are replaced by a no-data marker of -9999. Waterlevel observations are formatted to two decimal places, and the observation date is changed to mm/dd/yyyy format. The macro will detect if any water-level observation date is originally in yyyymm format and convert this date to mm/15/yyyy in the observation date column. The original yyyymm date is retained in the formatted data worksheet and placed in the same row in column CW (column 101). The user can look through this column to

verify if dates in question were formatted properly. If a date is encountered that is not in any of the correct original formats, this row of data is deleted from the *formatted data worksheet*.

All data on the new *formatted data worksheet* are sorted first by site identification number, then by observation date. The macro then searches through the water-level observations and dates for each unique site identification number, deleting instances of identical date and observation. Longitude values are made negative for ease of use with ArcMap. If positive longitude values are required, they may be changed back using Excel functions. If any records for a site have a blank entry for latitude or longitude, then a nonblank value from a record for the same well is copied to the blank entry.

It is recommended that the combine_format_datasets macro be run on an *original data worksheet* even if there is only one source for the data. It is important for other macros described in this report that the data be formatted properly (for example, that site identification numbers

Figure 3. User-interface window in Microsoft Excel® for selecting the worksheet containing the water-level data (*original data worksheet*) and specifying whether the observations are depth to groundwater or water-level altitude.

be formatted as numbers and not text and that observation dates be recognizable in Excel as dates) and that no blanks exist in either the water-level observation or observation date cells. Because all combining and formatting is done on a copy of the *original dataset worksheet*, nothing is lost by running this macro on the original dataset.

observation stats

This macro provides general information on waterlevel observations in the formatted dataset. Upon running this macro, the user is again prompted for the worksheet containing the dataset to be analyzed (fig. 3). The dataset selected should be the formatted data worksheet created by the preceding combine format datasets macro. A new worksheet titled *observation stats* is created in the workbook to contain the summary information. The macro will fail if a worksheet with this name already exists in the active workbook. Therefore, it is recommended that the worksheet name be changed after completion of the macro. A table with each unique site identification number along with the number of water-level observations, the earliest observation date, and the last observation date is created on the worksheet, along with three additional summary tables. A Site Summary table is created that lists the number of unique site identification numbers in the dataset and the number of sites with water-level observations whose water-level status was flagged in the Waterlevel status (C238) column (column I) as either pumping, recently pumped, nearby pumping, nearby recently pumped, injecting, nearby injecting, or dry (fig. 4). A Water-Level Observations Summary table lists the number of sites with a minimum number of water-level observations ranging from 5 to 300 (fig. 4). A Summary of Water-Level Observations Time Span table presents information on the number of sites in the dataset whose first and last water-level observations are before and after specific dates (fig. 4).

create xyz worksheet

This macro creates two worksheets: one with a subset of the data from the *formatted data worksheet* based on user-specified options (*subset data worksheet*) and a second with summary information on water levels for each site in the *subset data worksheet* that can be imported into ArcMap as an "XY Data" file (XY Data input file worksheet). The user is first prompted for the worksheet containing the water-level data to be analyzed (fig. 3). As with the observation stats macro, this should

be the formatted data worksheet. A second window presents options for limiting data in the formatted data worksheet to be analyzed and included in the XY Data input file worksheet and subset data worksheet (fig. 5). Each of these four options is discussed separately below. Because the subset data worksheet and the XY Data input file worksheet are common to all possible subsets of the formatted data, these are also discussed in the sections below. After the user selects the method for limiting the data to be analyzed, the user is asked to keep or eliminate water-level observations whose status was flagged as either pumping, recently pumped, nearby pumping, nearby recently pumped, injecting, or nearby injecting (fig. 6). Flagged data chosen for elimination will not be included in the subset data worksheet or the XY Data input file worksheet. The macro will fail if worksheets in the active workbook exist with the same names as those the macro is attempting to create. Therefore, it is recommended that the newly created worksheets be renamed after completion of the macro.

All Data

The first data-limiting option is to include and analyze all data from the *formatted data worksheet* (fig. 5). The macro copies the *formatted data worksheet* to a *subset data worksheet* and eliminates only those flagged observations chosen by the user (fig. 6). The name of the *subset data worksheet* begins with "data_ALL_", with an extension indicating the flagged data eliminated (for example, data_ALL_no_PSI indicates no pumping, nearby pumping, or injecting flagged observations were included). A summary *XY Data input file worksheet* is created based on data in the *subset data worksheet* and is named "xyz_ALL_", with the same extension as the *subset data worksheet*.

List of Site Identification Numbers

The second data-limiting option is to only include and analyze a subset of the *formatted data worksheet* based on a user-supplied list of site identification numbers (fig. 5). The user is prompted for the worksheet that contains the list of site identification numbers (fig. 7). This list also has specific location and formatting requirements: the site identification numbers must be in Column A and begin on row 2, they must be formatted as numbers, and they must be sorted from lowest to highest values (fig. 8). The macro creates a *subset data worksheet* containing only data from sites on the site list, eliminating flagged observations chosen by the user. The name of the *subset data worksheet*

F	G	H	l l	J
Site Summary			Water-Level Obser	vations Summary
Number of unique site id's:	3555		Min Observations	Number of Sites
Number of sites with observations flagged as			5	1593
Pumping (P)	0		15	963
Recently Pumped (R)	28		25	583
Nearby Pumping (S)	3		50	154
Nearby Recently Pumped (T)	0		100	46
Well Injecting (I)	0		150	14
Nearby Injecting (U)	0		200	6
Dry (D)	0		250	3
			300	2

L	M	N	0	Р	Q	R	S	T	U
Summary of Water-Level (Observation	s Time Spa	n						
	And Contin	uing After -	->						
Record Beginning Before	1/1/1991	1/1/1993	1/1/1995	1/1/1997	1/1/1999	1/1/2001	1/1/2003	1/1/2005	1/1/2007
1/1/1910	0	0	0	0	0	0	0	0	0
1/1/1920	0	0	0	0	0	0	0	0	0
1/1/1930	1	1	1	1	1	1	1	1	0
1/1/1940	21	21	19	16	16	12	12	9	0
1/1/1950	128	128	124	109	107	83	81	71	0
1/1/1960	415	412	403	362	354	317	313	254	0
1/1/1970	631	628	618	554	543	493	486	394	0
1/1/1980	752	748	738	642	631	572	565	460	0
1/1/1990	1332	1325	1296	1060	1043	942	932	794	0
				Nui	mber of Site	es			

Figure 4. Example output of observation_stats program presenting summary information about water-level dataset.

Figure 5. User-interface window in Microsoft Excel® for selecting data subsets for the water-level analysis tool.

Figure 6. User-interface window in Microsoft Excel® for selecting options for retaining or removing water-level observations on the basis of water-level status.

Figure 7. User-interface window in Microsoft Excel® for selecting worksheet containing a list of site identification numbers to be included in a subset of water-level data.

begins with "data_LIST_", with an extension indicating the flagged data eliminated. A summary XY Data input file worksheet is created based on data in the subset data worksheet, and is named "xyz_LIST_", with the same extension as the subset data worksheet. If no data are found for a site identification number on the list, then the site number is highlighted on the site list and the message "site not found in dataset" is displayed next to it (fig. 8).

Start and End Dates of Observation

The third data-limiting option is to only include and analyze a subset of the formatted data worksheet based on observations that fall between user-specified start and end dates (fig. 5). This option is useful for investigating changes in water levels during a time period of interest. The user is prompted for the earliest and latest observation dates that define the period of interest (fig. 9). The dates must be entered in mm/dd/vvvv format. The macro creates a subset data worksheet of only water-level observations that fall between the earliest and latest dates, eliminating flagged observations chosen by the user. The name of the subset data worksheet begins with "data DATES", with an extension indicating the flagged data eliminated. A summary XY Data input file worksheet is created based on data in the *subset data worksheet* and is named "xyz DATES", with the same extension as the subset data worksheet.

Wells with Records that Span a Time Period

The final data-limiting option is to only include and analyze a subset of the *formatted data worksheet* based on

1	А	В	С	D	E
1	Site ID				
2	311739111132601				
3	312827111303301				
4	312860111323201				
5	312900111323201	site not found in dataset			
6	312926111334501	site not found in dataset			
7	312946111334501				
8	313429111301501				
9	313429111301905	site not found in dataset			
10	313436111262101				
11	313612111312301				
12	313811111183501				
13	313850111295701				
14	314135111263101				
15	314436110535701				
16	314454111023701				
17	320606111532201	site not found in dataset			
18	320626111484101	site not found in dataset			
19					
14 -4	→ → Example_Site	eID List / xyz_LIST _no_P	RSTIU /	data_LIST_	_no_PRSTIU 🦯 ધ 🥒

Figure 8. Example of a list of site identification numbers used to create a subset of water-level data.

wells whose period of record begins before a user-specified beginning date and continues past a user-specified ending date (fig. 5). For example, it may be informative to obtain data and summary information for wells whose records begin during a predevelopment time period and continue until recent years. The user is prompted for the cutoff dates for the earliest and last observations (fig. 10) that define the time span of interest. The dates must be entered in mm/dd/yyyy format. Only wells that have at least one observation before the earliest date and one observation after the last date are accepted. All waterlevel data from these accepted wells, minus any flagged observations chosen by the user, are included in the *subset* data worksheet. The name of the subset data worksheet begins with "data SPAN", with an extension indicating the flagged data eliminated. A summary XY Data input file worksheet is created based on data in the subset data

Figure 9. User-interface window in Microsoft Excel® for selecting earliest and latest observation dates for creating a subset of water-level data.

Heading	Explanation
	longitude or y-coordinate of the site location as provided on the <i>subset data</i>
Longitude	worksheet
	latitude or x-coordinate of the site location as provided on the subset data
Latitude	worksheet
Site_ID	site identification number formatted as text
Well_Numbr	well number
Avg_WtrLvl	average water level for the site for observations on the subset data worksheet
	standard deviation of water-level observations for the site for observations on the
StndDev_WL	subset data worksheet
	number of water-level observations for the site for observations on the subset data
n_Obsrvtns	worksheet
1stObsDate	first water-level observation date for the site on the subset data worksheet
1stWLObs	first water-level observation for the site on the subset data worksheet
LstObsDate	last water-level observation date for the site on the subset data worksheet
LstWLObs	last water-level observation for the site on the subset data worksheet
MinDepthDt	date of the minimum depth to water for the site on the subset data worksheet
MinDepthOb	minimum depth to water for the site on the subset data worksheet
MaxDepthDt	date of the maximum depth to water for the site on the subset data worksheet
MaxDepthOb	maximum depth to water for the site on the subset data worksheet
	number of days between the first and last water-level observation for the site on the
WellRecord	subset data worksheet
	maximum water-level decline between any two observations for the site on the
MaxDecline	subset data worksheet
	the maximum water-level rise between any two observations for the site on the
MaxRise	subset data worksheet
Hole_Depth	hole depth for the site on the subset data worksheet
Well_Depth	well depth for the site on the subset data worksheet
LandSurfElv	land surface elevation for the site on the subset data worksheet
	a stem for creating a hyperlink to the well hydrograph in ArcGIS (see instructions
Hydrograph	for Well_Hydrographs.xlsm macros)

Table 2. Summary information tabulated by create_xyz_worksheet tool from data in a subset data worksheet.

worksheet and is named "xyz_SPAN_", with the same extension as the *subset data worksheet*.

Summary XY Data Worksheet

The summary XY Data input file worksheet is created on the basis of water-level data in the subset data worksheet. It is important to recall that water-level information summarized in the XY Data input file worksheet is based solely on data contained on the subset data worksheet and will therefore be limited by user choices made when producing the subset worksheet. The first three rows of this worksheet list the user selections that were chosen to produce the subset data worksheet and then summarized in the XY Data input file worksheet. In this way, users can keep track of what data are being summarized. For example, the first row for an xyz DATES worksheet

Figure 10. User-interface window in Microsoft Excel® for selecting earliest and latest water-level observation dates that define the time span of interest for creating a subset of water-level data.

might be: "Summary of OBSERVATIONS BETWEEN 1/1/1951 AND 12/31/1970"; and the second row might be: " no PRSTIU FLAGGED OBSERVATIONS." These first three rows of information must be deleted before the worksheet can be imported into ArcMap as an "XY Data" file. It may be useful to first save a copy of the XY Data input file worksheet, delete the first three rows, and then import this copy into ArcMap.

There is a row of summary information in the XY Data input file worksheet for each site identification number that includes spatial location information along with water-level summary information such as the average and standard deviation of water levels, first and last waterlevel observations and dates, and maximum water-level rise and decline, among others (table 2). Heading titles are chosen to fit within ArcMap's limit of 10 characters. Site identification numbers are formatted as 15-character text in order to avoid the imposition of scientific notation formatting in ArcMap. The Hydrograph column contains the characters "PATH\" followed by the site identification number followed by ".pdf". Macros contained in the Well Hydrograph.xlsm workbook described in this report will produce PDF-formatted hydrographs that can be hyperlinked to the "XY Data" input file in ArcMap. The "PATH" string in the Hydrograph column must be replaced (using Excel's find and replace function, for example) with the path to the location of the hydrographs for the hyperlinking to work.

Well_Hydrographs.xlsm

The Well Hydrographs.xlsm workbook contains macros that produce hydrograph charts from water-level data and make PDF-formatted versions of the hydrographs that can be hyperlinked to well locations in ArcMap. The workbook contains two publicly visible macros: makeExcelHydrographs and makePDFfromChart. These macros must be run from the workbook that contains the *subset* data worksheet, or the subset data worksheet must first be copied to the Well Hydrographs.xlsm workbook. As the makePDFfromChart macro creates PDF-formatted versions of existing chart sheets, the makeExcelHydrographs macro must be run first, or other existing chart sheets must be present in the active workbook.

makeExcelHydrographs

This macro creates water-level hydrographs from the subset data worksheet produced by the Well Analyses. **xlsm** macros (or a similarly formatted data worksheet).

The data location and formatting requirements for the makeExcelHydrographs macro are the same as for the Well Analyses.xlsm macros (fig. 1 and table 1). Either depth-to-water or water-level-altitude data may be used. The user is first prompted for the worksheet containing the formatted water-level data for which hydrographs are to be constructed (fig. 3). This should be the subset data worksheet produced by any of the user-defined options in the previously described create xyz worksheet macro in the Well Analyses.xlsm workbook. A second window presents options for the horizontal (date of observation) and vertical (observation depth or altitude) axes (fig. 11). Manually scaling the axes produces consistent hydrographs for all sites in the subset data worksheet and allows easy visual comparison of data among wells. If the automatic option is chosen for the observation axis, the minimum value for the axis will be the minimum observation for the site rounded down to the nearest ten, and the maximum axis value will be the maximum observation for the site rounded up to the nearest ten. For example, if a site has depth-to-water values that range from 18 to 51 feet below land surface, then the vertical axis will range from 10 to 60 feet. If the automatic option is chosen for the date of observation axis, then that axis will range from January 1st of the year of the earliest observation to January 1st of the year after the last observation.

The macro creates a new chart worksheet for each site identification number in the subset data worksheet and plots the water-level observation versus the obser-

Figure 11. User-interface window in Microsoft Excel® for selecting axes options for well hydrographs.

vation date. Each chart worksheet is named by the site identification number. All charts are linked back to the original subset data worksheet, and any change in the worksheet will be reflected in the appropriate chart. The font for all text in the charts is set to Univers 57 Condensed. This font may either be changed manually within each chart, or the font used to create each chart may be changed by editing program lines 269, 318, 331, 339, 448, 463, 478, 492, 508, and 524. Well information, including the site identification number, well name, longitude and latitude of the well location, altitude of land surface, and well depth are included at the top of the hydrograph (fig. 12). When the hydrograph is printed or converted to a PDF, a "created on" date is placed in the header (fig. 12). An agency identifier logo may also be placed in the header by uncommenting program line 537 and entering the path to the graphic file. The water-level observations axis is adjusted depending on whether the data are depth to water (smallest value at the top, largest at the bottom) or water-level altitude (smallest value at the bottom, largest at the top). A solid line connects observations that are less than or equal to one year apart, with a dashed line connecting observations greater than one year apart. To facilitate plotting the solid and dashed lines, a worksheet entitled SolidLineData is created in each chart workbook. A new workbook is created to save each multiple of 50 charts. After each multiple of 50 charts, the user is prompted for a new workbook name to contain the next 50 charts. All charts in subsequent workbooks remain linked back to the original subset data worksheet. To maximize speed by reducing memory usage, only the workbook containing the original subset data worksheet remains open after reaching the 50 chart limit.

makePDFfromChart

This macro uses the free 2007 Microsoft Office® add-in "Microsoft Save as PDF or XPS" to export charts to the PDF format. The add-in is available through Microsoft's download site (http://www.microsoft.com/downloads). Once exported to the PDF format, the charts can then be hyperlinked to well locations in ArcMap. The macro prompts the user for the location of the folder where PDF charts will be saved. It is this path that should be used to replace the "PATH" string in the Hydrograph field of the XY Data input file worksheet described previously. The macro cycles through each chart in the active workbook and creates a PDF version of the chart using the site identification number plus ".pdf" as the file name. Only charts within the active

workbook are exported to PDF. If multiple workbooks were created to hold more than 50 charts, then the macro will need to be run again from within each workbook that contains charts.

Displaying Results in ArcMap

Excel 2007 worksheets (.xlsx or .xlsm files) may be imported directly into ArcMap version 9.3. For earlier versions of ArcMap, the XY Data input file worksheet must first be saved either as an Excel 2003 file (.xls) or as a comma-separated value (.csv) file. The "PATH" string in the Hydrograph field of the XY Data input file worksheet must be replaced by the path to the PDF hydrographs to enable the hyperlinking feature. The first row must contain the field heading labels to be imported into ArcMap (the first three rows of user-selection information from the XY Data input file worksheet must first be deleted). To import the XY Data input file worksheet from the create xyz worksheet macro into ArcMap, with an ArcMap document open, select the "Tools" menu option, then "Add XY Data." Browse to the appropriate workbook, select the XY Data input file worksheet, and the longitude and latitude data should automatically be specified as the fields for the x and y coordinates. If not, use the pulldown menus to select these fields. Select the coordinate system of the well data, and the summary information for the wells is projected as a temporary point file in ArcMap.

To be able to use the hyperlinking feature, the temporary point file should be exported as a new feature class, such as a point shapefile (see ArcGIS Desktop™ help for more information). Once the well shapefile has been created, the hydrograph may be linked to the well location using field-based hyperlinks. To enable fieldbased hyperlinking, double-click the well shapefile in the table of contents, click the "Display" tab, check the "Support Hyperlinks using field" box, click the dropdown arrow and click the Hydrograph field. On the next row of information, select the "Document" radio button for hydrographs on your computer or the "URL" radio button for network-based hydrographs, then click "OK." To view the hydrographs, select the Hyperlink tool from the ArcMap toolbar (a lightning bolt), then click any of the well locations. A popup window will appear with the PDF hydrograph of the selected well.

The symbology properties in ArcMap can be used on the different fields of summary well information in the well shapefile. For example, using graduated colors on values in the MaxDecline field will highlight the

Figure 12. Example hydrographs produced by makeExcelHydrographs tool for water-level data given as depth to groundwater (top panel) and water-level altitude (bottom panel). LSD, land surface datum; AMSL, above mean sea level.

location and range of decline of water in wells that were observed to have falling water levels during the period of time represented by the *subset data worksheet*.

Summary and Conclusions

The macros described in this report provide an efficient method for processing water-level data from NWIS or other databases into usable information in a GIS environment. Macros are presented here for combining data from multiple sources and for summarizing general information on water-level observations in a dataset. Another macro creates an XY Data input file worksheet with water-level information for selected wells, such as first and last water-level observations, average water level, and maximum water-level decline and rise, among others. Wells and water-level observations may be included or excluded from this XY Data input file worksheet on the basis of user-specified selection criteria, such as including only wells on a specified list, only observations between specified dates, or only wells that span a given time period. This XY Data input file worksheet can be imported into ArcMap and projected as a point shapefile. An additional workbook contains macros that create PDF-formatted well hydrographs from the selected wells that can be hyperlinked to well locations in ArcMap.

Although the macros described in this report must all be run on a formatted data worksheet, they may be run in differing combinations to produce desired results. For example, a user might want to investigate wells with more than a given number of water-level observations. To accomplish this, run the observation_stats macro on the formatted data worksheet, sort the resulting site identification numbers by number of observations, delete all sites with fewer than the specified number of observations, sort the remaining wells by site identification number, then use this as the site list for the create xyz worksheet macro. Another example might be to produce a subset data worksheet using the timespan method for limiting data to long-term monitored wells, then use the dates method on this subset of data to focus in on observations during a shorter time period of interest. Using

these sets of tools, many options are available to refine the dataset.

Additionally, the data in the *original data work-sheet* may be processed in Excel before running any of these macros. For example, all of the original data might first be sorted by water-use category. Then the data categorized as irrigation could be copied to a new worksheet (in the locations required by the tools). The combine_format_datasets macro would then be run on this irrigation-only data worksheet, and it would be ready for use by any of the XY Data-producing and hydrograph macros. Additional fields of data not mentioned in this report may also be used to first limit the original dataset in Excel, or selection choices may be made in NWIS or other database queries. One useful example may be to limit wells to a desired screened interval using NWIS codes C073 and C074.

Spatial representation of groundwater information in GIS systems has become nearly ubiquitous. The usefulness of GIS systems for groundwater investigations is evident both during the many stages of a hydrologic investigation, as well as in presentation of the investigation results in a meaningful way to policymakers and the public. Easy-to-use tools are required to bring within reach of all hydrologists the ability to efficiently process raw data into useful information.

References Cited

Tillman, F.D, Leake, S.A., Flynn, M.E., Cordova, J.T., and Schonauer, K.T., 2007, An online interactive map service for displaying ground-water conditions in Arizona: U.S. Geological Survey Open-File Report 2007-1436, 16 p. [http://pubs.usgs.gov/of/2007/1436/, last accessed 06/04/2009].

Tillman, F.D, Leake, S.A., Flynn, M.E., Cordova, J.T., Schonauer, K.T., and Dickinson, J.E., 2008, Methods and indicators for assessment of regional ground-water conditions in the southwestern United States: U.S. Geological Survey Scientific Investigations Report 2008-5209, 22 p. [http://pubs.usgs.gov/sir/2008/5209/, last accessed 06/04/2009].

14	Excel® Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap™
	This page intentionally left blank

Appendix: Program Listings

data_combine_and_format

```
Public DataWkbkName As String
2
3
   Sub combine_format_datasets()
4
5
   VBA updated 6/4/2009 by ftillman
6
7
   'This code combines water-level datasets from two or more sources into one worksheet.
8
   'The combined-data worksheet is then formatted for use by other VBAs in this workbook.
9
10 Dim allDataSheet As String
11 Dim Counter As Long, siteRowStart As Long, siteRowEnd As Long, totalrows As Long
12 Dim onesRange As Range, siteIDRange As Range
13 Dim yr As Integer, mth As Integer, dy As Integer, dateStringLength As Long
14 Dim LatFind As String, LongFind As String
15 Dim startTime As Long, endTime As Long, elapsedTimeSeconds As Long
16 Dim elapsedTime As Variant, units As String
17
18
      DataWkbkName = ActiveWorkbook.Name
19
20
      lstSelectDataWorksheet.Show
21
      allDataSheet = DataWkshtName
22
23 startTime = Timer
24
25 siteRowStart = 22 ' first row of data
26 \text{ totalrows} = 0
27
28
     First, copy the worksheet data to a new worksheet
29
      Sheets(allDataSheet).Select
30
      Sheets(allDataSheet).Copy After:=Sheets(1)
31
      ActiveSheet.Name = allDataSheet & "FMT"
32
      Sheets(allDataSheet & "_FMT").Move After:=Sheets(Worksheets.Count)
33
34
    'This loop is only to count the number of rows
35
      Counter = siteRowStart
36
      Do While (Cells(Counter, 2)) > 0
37
       totalrows = totalrows + 1
38
       Counter = Counter + 1
39
      Loop
40
41
      Application.ScreenUpdating = False 'turns off screen updating
42
      Application.DisplayStatusBar = True 'makes sure that the statusbar is visible
43
      Application. StatusBar = "Deleting rows that have no date or water-level observation"
44
45
      Delete rows of data that have no date or water level observation
      Counter = siteRowStart
46
47
      Do While (Cells(Counter, 2)) > 0
```

```
48
       If (IsEmpty(Cells(Counter, 8)) Or IsEmpty(Cells(Counter, 7))) Then
49
        Rows(Counter).Select
50
        Selection.Delete Shift:=xlUp
51
        Counter = Counter - 1
52
        totalrows = totalrows - 1
53
       End If
54
       Counter = Counter + 1
55
      Loop
56
      Convert site ID to a number and format it
58'
       First, create a column of 1s in the last column of the spreadsheet
59
        Cells(siteRowStart, 101).Select
60
        Selection. Value = "1"
61
        Selection.Copy
62
        Range(Cells(siteRowStart, 101), Cells(siteRowStart + totalrows - 1, 101)). Select
63
        ActiveSheet.Paste
64
        Selection.Copy
65
66'
       Copy this column of 1s and paste special-multiply with the site ID
        Range(Cells(siteRowStart, 2), Cells(siteRowStart + totalrows - 1, 2)). Select
67
68'
       Paste special
69
        Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlMultiply, SkipBlanks:=False, Transpose:=False
70'
       Format site id
71
        Selection.NumberFormat = "0"
72
73
74 '
       Ensure Well and Hole Depth and Well Altitude are also numbers (not text)
75
        Range(Cells(siteRowStart, 101), Cells(siteRowStart + totalrows - 1, 101)). Select
76
        Selection.Copy
77
         Range(Cells(siteRowStart, 13), Cells(siteRowStart + totalrows - 1, 14)). Select
78
        Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlMultiply, SkipBlanks:=True, Transpose:=False
79
        Selection.NumberFormat = "0.00"
80
81
        Range(Cells(siteRowStart, 101), Cells(siteRowStart + totalrows - 1, 101)).Select
82
        Selection.Copy
83
        Range(Cells(siteRowStart, 10), Cells(siteRowStart + totalrows - 1, 10)). Select
84
        Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlMultiply, SkipBlanks:=True, Transpose:=False
        Selection.NumberFormat = "0.00"
85
86
87
       Delete column of 1s
88
        Columns("CW:CW").Select
89
        Selection.Delete Shift:=xlToLeft
90
91
      Application.StatusBar = "Formatting data"
92
93
        Counter = siteRowStart
94
        Do While Counter <= (siteRowStart + totalrows - 1)
95
96 '
        Replace blank cells with -9999 to indicate no data
97
           If (Cells(Counter, 10) = 0#) Then
98
           Cells(Counter, 10) = -9999
```

```
99
           End If
100
           If (Cells(Counter, 13) = 0#) Then
101
           Cells(Counter, 13) = -9999
102
           End If
103
           If (Cells(Counter, 14) = 0\#) Then
           Cells(Counter, 14) = -9999
104
105
           End If
106
107 '
           Format date as mm/dd/yyyy
108
           Cells(Counter, 7).Select
109
           If IsDate(Cells(Counter, 7)) Then
110
           Selection.NumberFormat = "mm/dd/yyyy"
111
           Else
112
113
           Cells(Counter, 101) = Cells(Counter, 7) 'copy the existing date to a new column
114
           dateStringLength = Len(Cells(Counter, 7))
115
116 '
            If date is in format yyyymmdd
117
           If dateStringLength = 8 Then
                                              'if date is greater than 4 digits
            yr = Left(Cells(Counter, 7), 4)
                                                ' parse first 4 digits as year
118
                                          'if year is less than 1900, then Excel can't handle it, so delete the row
119
            If yr < "1900" Then
120
             Range(Cells(Counter, 1), Cells(Counter, 20)).Delete Shift:=xlUp
121
             Counter = Counter - 1
122
             totalrows = totalrows - 1
123
             GoTo 1000
124
             End If
125
            mth = Mid(Cells(Counter, 7), 5, 2)
                                                  ' parse next 2 digits as month
126
            dy = Right(Cells(Counter, 7), 2)
                                                 ' parse last 2 digits as day
127
            Cells(Counter, 7). Value = mth & "/" & dy & "/" & yr concatenate date
            Cells(Counter, 7). NumberFormat = "mm/dd/yyyy"
128
129
           ElseIf dateStringLength = 6 Then
                                                'if date is in format yyyymm
130
            yr = Left(Cells(Counter, 7), 4)
                                                 parse first 4 digits as year
131
            mth = Right(Cells(Counter, 7), 2)
                                                  parse next 2 digits as month
132
                         ' parse last 2 digits as day
133
            Cells(Counter, 7). Value = mth & "/" & dy & "/" & yr
                                                                   ' concatenate date
            Cells(Counter, 7). NumberFormat = "mm/dd/yyyy"
134
135
136
137
          For all other possibilities, including yyyy, just delete the row
138
            Range(Cells(Counter, 1), Cells(Counter, 20)).Delete Shift:=xlUp
139
            Counter = Counter - 1
140
            totalrows = totalrows - 1
141
           End If 'end test of date length
142 1000 End If
                      'end test of IsDate
143
144'
          If not already, make longitude value negative for use in ArcMap xyz file
          If Cells(Counter, 5). Value > 0 Then
145
146
           Cells(Counter, 5). Value = (Cells(Counter, 5). Value) * (-1)
147
          End If
148
149
        Counter = Counter + 1
```

```
150
        Loop
151
152
153
      Format water level as a number with 2 decimal places
154 '
155
        Range(Cells(siteRowStart, 8), Cells(siteRowStart + totalrows - 1, 8)). Select
156
        Selection.NumberFormat = "0.00"
157
158 '
      Sort worksheet by site ID, then by observation date
159
        Range(Cells(siteRowStart, 1), Cells(siteRowStart + totalrows - 1, 101)).Sort
160
        Key1:=Range(Cells(21, 2), Cells(siteRowStart + totalrows - 1, 2)), Order1:=xlAscending,
161
        Key2:=Range(Cells(21, 7), Cells(siteRowStart + totalrows - 1, 7)), Order2:=xlAscending
162
163
164'
      Delete duplicate entries of water level and observation date
165 '
      first, get the range of current site id
166
      Application.StatusBar = "Deleting duplicate entries"
167
168
     Row = siteRowStart
169
      siteRowEnd = siteRowStart
170
     Do While (Cells(Row, 2)) > 0
171
        Do While (Cells(Row, 2) = Cells(Row + 1, 2))
172
           Row = Row + 1
173
           siteRowEnd = Row
174
        Loop
175
176
     If siteRowStart < siteRowEnd Then 'only need to check for duplicates, lat/long if more than 1 observation
177
178
        TestSite = siteRowStart
179
        Do While (TestSite <= siteRowEnd - 1)
180°
       compare water level date and observation within site ID and delete if duplicates
181
         TestedSite = TestSite + 1
182
         Do While (TestedSite <= siteRowEnd)
183
         If (Cells(TestSite, 7) = Cells(TestedSite, 7)) And (Cells(TestSite, 8) = Cells(TestedSite, 8)) Then
184
           Range(Cells(TestedSite, 1), Cells(TestedSite, 101)).Delete Shift:=xlUp
185
           siteRowEnd = siteRowEnd - 1
                                          '1 row deleted
186
          TestedSite = TestSite + 1
                                       'start check over again to ensure no other duplicates
         Else
187
188
           GoTo 1111
                         'data is sorted by date, so if next consecutive obs is not the same then no other will be
189
         End If
190
         Loop 'check rest of site ID data
191
192
             TestSite = TestSite + 1
193
        Loop 'check next site ID against rest of site ID data
194
195 '-----
                                 -----may want to remove this-----
196' if there are any water-level observations with no lat/long values for a given site id, copy them from one
   that has this info
197
       LatFind = -9999
       LongFind = -9999
198
199
```

```
200
      If siteRowStart < siteRowEnd Then
201
       Counter = siteRowStart
202
       Do While (Counter < siteRowEnd)
203
         If Cells(Counter, 4) \geq = 0 Or Not (IsEmpty(Cells(Counter, 4))) Then 'get value
204
           LatFind = Cells(Counter, 4). Value 'latitude
205
           LongFind = Cells(Counter, 5). Value 'longitude
206
           Exit Do
207
         End If
208
         Counter = Counter + 1
209
       Loop
210
211
       Do While Counter <= siteRowEnd
212
         If Cells(Counter, 4) <= 0 Or IsEmpty(Cells(Counter, 4)) Then 'find blank and copy
213
           Cells(Counter, 4). Value = LatFind 'latitude
           Cells(Counter, 5). Value = LongFind 'longitude
214
215
         End If
216
         Counter = Counter + 1
217
       Loop
218
219
       End If 'End lat/long 1 data point check
220
221
     End If
             'End big 1 data point check
222
223
     siteRowStart = siteRowEnd + 1
224
     Row = siteRowStart
225
     siteRowEnd = siteRowStart
226
     Loop 'loop through the next siteID block of data
227
228 '-----
229
230
     Counter = 22
231
232 '------
233
     Application.StatusBar = False
234
235
    Application.ScreenUpdating = True
236
237 Cells(1, 1).Select
238
239 endTime = Timer
240 elapsedTimeSeconds = endTime - startTime
241 If elapsedTimeSeconds < 0 Then
242 elapsedTimeSeconds = (86400 - startTime) + endTime
243 End If
244 If elapsedTimeSeconds >= 60 Then
245 elapsedTime = elapsedTimeSeconds / 60
246 units = "minutes"
247 Else
248 elapsedTime = elapsedTimeSeconds
249 units = "seconds"
250 End If
```

```
251 MsgBox "data_combine_and_format program ended. Elapsed time " & Format(expression:=elapsedTime, Format:="Standard") & units
252
253 End Sub
observation_stats
1 "VPA undeted by Fred Tillmen on 6.4.2000.
```

```
'VBA updated by Fred Tillman on 6-4-2009
   ' This VBA code summarizes information on water-level observations including number of
2
   'unique site id's, number of observations per well, first and last observation dates per well,
   'information on number of sites with observations flagges as certain values (such as pumped),
   ' and information on the time span of observations for all sites in the dataset.
6
7
   Sub observation stats()
   Dim allDataSheet As String, StatsSheet As String
10 Dim siteID As String, nObs As Integer, Earliest Obs As String, Last Obs As String
11 Dim Counter As Long, allRowStart As Long, allRowEnd As Long, StatsRow As Integer
12 Dim nP As Integer, nR As Integer, nS As Integer, nT As Integer, nI As Integer, nU As Integer, nD As Integer
13 Dim nCount(1 To 9, 1 To 9) As Single, Before(1 To 9) As Date, After(1 To 9) As Date
14 Dim startTime As Long, endTime As Long, elapsedTimeSeconds As Long, elapsedTime As Variant
15 Dim units As String
16
17
     nP = 0
     nR = 0
18
19
     nS = 0
20
     nT = 0
21
     nI = 0
22
     nU = 0
23
     nD = 0
24
25 DataWkbkName = ActiveWorkbook.Name
26
27
      Ist Select Data Work sheet. Show \\
28
      allDataSheet = DataWkshtName
29
    StatsSheet = "Observation Stats"
31
    Set NewSheet1 = Worksheets.Add
    NewSheet1.Name = StatsSheet
    Sheets(StatsSheet).Move After:=Sheets(Worksheets.Count)
33
34
35 startTime = Timer
36
    Worksheets(StatsSheet).Cells(1, 1).Value = "Site ID"
37
38
    Worksheets(StatsSheet).Cells(1, 2).Value = "n Observations"
    Worksheets(StatsSheet).Cells(1, 3).Value = "Earliest Observation"
40
    Worksheets(StatsSheet).Cells(1, 4).Value = "Last Observation"
41
```

42

allRowStart = 22

'22

```
43
    StatsRow = 2
44
    Worksheets(allDataSheet).Activate
45
46
47
     Application.ScreenUpdating = False 'turns off screen updating
     Application.DisplayStatusBar = True 'makes sure that the statusbar is visible
48
     Application.StatusBar = "Cataloging All Site IDs"
49
50
51
    Do While (Worksheets(allDataSheet).Cells(allRowStart, 2)) > 0
52
53
      ' first, get the range of current site id
54
      Counter = allRowStart
55
      allRowEnd = allRowStart
56
      Do While (Cells(Counter, 2) = Cells(Counter + 1, 2))
57
        Counter = Counter + 1
58
        allRowEnd = Counter
59
      Loop
60
61
      ' check water-level status and update flag count
62
      For Counter = allRowStart To allRowEnd
63
        If Cells(allRowStart, 9) = "P" Then
         nP = (nP + 1)
64
65
         Exit For
66
        ElseIf Cells(allRowStart, 9) = "R" Then
         nR = (nR + 1)
67
68
         Exit For
        ElseIf Cells(allRowStart, 9) = "S" Then
69
70
         nS = (nS + 1)
71
         Exit For
72
        ElseIf Cells(allRowStart, 9) = "T" Then
73
         nT = (nT + 1)
74
         Exit For
75
        ElseIf Cells(allRowStart, 9) = "I" Then
76
         nI = (nI + 1)
77
         Exit For
78
        ElseIf Cells(allRowStart, 9) = "U" Then
79
         nU = (nU + 1)
80
         Exit For
81
        ElseIf Cells(allRowStart, 9) = "D" Then
82
         nD = (nD + 1)
83
         Exit For
84
        End If
85
      Next Counter
86
87
      siteID = Cells(allRowStart, 2)
                                         ' save siteID
88
      nObs = allRowEnd - allRowStart + 1
89
      Earliest Obs = Cells(allRowStart, 7)
90
      Last Obs = Cells(allRowEnd, 7)
91
92
      ' write information for each site id to stats worksheet
93
      Worksheets(StatsSheet).Cells(StatsRow, 1).Value = siteID
```

```
94
      Worksheets(StatsSheet).Cells(StatsRow, 2).Value = nObs
95
      Worksheets(StatsSheet).Cells(StatsRow, 3).Value = Earliest Obs
96
      Worksheets(StatsSheet).Cells(StatsRow, 4).Value = Last Obs
97
    StatsRow = StatsRow + 1
98
99
    allRowStart = allRowEnd + 1
100
101 Loop
              ' big loop to next site id
102
103 Worksheets(StatsSheet). Activate
104
105 Worksheets(StatsSheet).Range("A2:A" & allRowEnd + 2).NumberFormat = "0"
                                                                                     'site ID
106
107
108 '-----'
      Application.StatusBar = "Creating Table of Summary Pumping Status"
109
110
111
      'Set up table for water-level observations summary
112
      Worksheets(StatsSheet).Cells(1, 6).Value = "Site Summary"
113
      Worksheets(StatsSheet).Cells(2, 6).Value = "Number of unique site id's:"
114
      Worksheets(StatsSheet).Cells(3, 6).Value = "Number of sites with observations flagged as"
      Worksheets(StatsSheet).Cells(4, 6).Value = "Pumping (P)"
115
      Worksheets(StatsSheet).Cells(5, 6).Value = "Recently Pumped (R)"
116
117
      Worksheets(StatsSheet).Cells(6, 6).Value = "Nearby Pumping (S)"
118
      Worksheets(StatsSheet).Cells(7, 6).Value = "Nearby Recently Pumped (T)"
119
      Worksheets(StatsSheet).Cells(8, 6).Value = "Well Injecting (I)"
120
      Worksheets(StatsSheet).Cells(9, 6).Value = "Nearby Injecting (U)"
121
      Worksheets(StatsSheet).Cells(10, 6).Value = "Dry (D)"
122
123
      'Count number of unique site ids
124
     nSites = 0
125
     Counter = 2
126
     Do While (Not IsEmpty(Cells(Counter, 2)))
127
       nSites = nSites + 1
128
       Counter = Counter + 1
129
     Loop
130
131
      Worksheets(StatsSheet). Cells(2, 7). Value = nSites
132
      Worksheets(StatsSheet). Cells(4, 7). Value = nP
133
      Worksheets(StatsSheet). Cells(5, 7). Value = nR
134
      Worksheets(StatsSheet). Cells(6, 7). Value = nS
135
      Worksheets(StatsSheet). Cells(7, 7). Value = nT
      Worksheets(StatsSheet).Cells(8, 7).Value = nI
136
137
      Worksheets(StatsSheet). Cells(9, 7). Value = nU
138
      Worksheets(StatsSheet). Cells(10, 7). Value = nD
139
140
      Application.StatusBar = "Creating Table of Summary Water-Level Observations"
141
142
      'Set up table for water-level observations summary
143
      Worksheets(StatsSheet).Cells(1, 9).Value = "Water-Level Observations Summary"
144
      Worksheets(StatsSheet).Cells(2, 9).Value = "Min Observations"
```

```
145
      Worksheets(StatsSheet).Cells(2, 10).Value = "Number of Sites"
146
147
      Counter = 2
148
      nCharts = 0
149
                                    ' counts sites min observations
150
      Do While Counter <= 10
151
        Select Case Counter
152
          Case 1
153
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 1
154
          Case 2
155
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 5
156
157
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 15
158
          Case 4
159
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 25
160
          Case 5
161
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 50
162
          Case 6
163
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 100
164
          Case 7
165
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 150
166
          Case 8
167
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 200
168
          Case 9
169
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 250
170
171
             Worksheets(StatsSheet). Cells(Counter + 1, 9). Value = 300
172
        End Select
173
174
175
176
       Row = 1 'sort through summary data to see if sites have minimum number of observations
177
       Do While (Worksheets(StatsSheet).Cells(Row, 2).Value) > 0
178
        Row = Row + 1
179
        If ((Cells(Row, 2).Value) \ge Cells(Counter + 1, 9).Value) Then
180
         nCharts = nCharts + 1
181
        End If
182
       Loop
183
184
       Worksheets(StatsSheet).Cells(Counter + 1, 10).Value = nCharts
185
186
       Counter = Counter + 1 'Increment Counter
187
       nCharts = 0
188
189
      Loop
190
191
192
193
      Application.StatusBar = "Creating Table of Summary Water-Level Observations Time Span"
194
      n = 2
195
      Worksheets(StatsSheet).Cells(n - 1, 12).Value = "Summary of Water-Level Observations Time Span"
```

```
196
      Worksheets(StatsSheet).Cells(n + 1, 12).Value = "Record Beginning Before"
197
      Worksheets(StatsSheet).Cells(n, 13).Value = "And Continuing After -->"
198
      Worksheets(StatsSheet). Cells(n + 11, 17). Value = "Number of Sites"
199
200
      Worksheets(StatsSheet). Cells(n + 2, 12). Value = "1/1/1910"
201
      Worksheets(StatsSheet). Cells(n + 3, 12). Value = "1/1/1920"
202
      Worksheets(StatsSheet). Cells(n + 4, 12). Value = "1/1/1930"
203
      Worksheets(StatsSheet). Cells(n + 5, 12). Value = "1/1/1940"
204
      Worksheets(StatsSheet). Cells(n + 6, 12). Value = "1/1/1950"
205
      Worksheets(StatsSheet). Cells(n + 7, 12). Value = "1/1/1960"
206
      Worksheets(StatsSheet). Cells(n + 8, 12). Value = "1/1/1970"
207
      Worksheets(StatsSheet). Cells(n + 9, 12). Value = "1/1/1980"
208
      Worksheets(StatsSheet). Cells(n + 10, 12). Value = "1/1/1990"
209
210
      Worksheets(StatsSheet). Cells(n + 1, 13). Value = "1/1/1991"
211
      Worksheets(StatsSheet). Cells(n + 1, 14). Value = "1/1/1993"
212
      Worksheets(StatsSheet). Cells(n + 1, 15). Value = "1/1/1995"
213
      Worksheets(StatsSheet). Cells(n + 1, 16). Value = "1/1/1997"
214
      Worksheets(StatsSheet). Cells(n + 1, 17). Value = "1/1/1999"
215
      Worksheets(StatsSheet). Cells(n + 1, 18). Value = "1/1/2001"
216
      Worksheets(StatsSheet). Cells(n + 1, 19). Value = "1/1/2003"
217
      Worksheets(StatsSheet). Cells(n + 1, 20). Value = "1/1/2005"
218
      Worksheets(StatsSheet). Cells(n + 1, 21). Value = "1/1/2007"
219
220
      Rvert = "L" & n + 2 & ":L" & n + 10
221
      Range(Rvert).Select
222
      With Selection.Borders(xlEdgeRight)
223
        .LineStyle = xlContinuous
224
        .Weight = xlMedium
225
        .ColorIndex = xlAutomatic
226
      End With
227
228
      Rhoriz = "L" & n + 2 & ":U" & n + 2
229
      Range(Rhoriz).Select
230
      With Selection.Borders(xlEdgeTop)
231
        .LineStyle = xlContinuous
232
        .Weight = xlMedium
233
        .ColorIndex = xlAutomatic
234
      End With
235
236
237
      'populate date arrays
238
      For L = 1 To 9
239
        Before(L) = Cells(L + 3, 12). Value
240
        After(L) = Cells(3, L + 12). Value
241
      Next L
242
243
     'initialize nCount array
244
      For L = 1 To 9
245
       For j = 1 To 9
        nCount(L, j) = 0
246
```

```
247
      Next j
     Next L
248
249
250
251
     allRowStart = 2 'after first time through, this will be allRowEnd + 1
252
253
     Do While Cells(allRowStart, 2) >= 1
254
       For L = 1 To 9
       For j = 1 To 9
255
256
        If Cells(allRowStart, 3) \leq Before(L) And Cells(allRowStart, 4) \geq After(j) Then
257
        nCount(L, j) = nCount(L, j) + 1
258
        End If
259
       Next j
260
      Next L
261 allRowStart = allRowStart + 1
262 Loop 'go to next site id
263
264
     'write values to correct spot on table
265
      For L = 1 To 9
266
      For j = 1 To 9
267
       Worksheets(StatsSheet). Cells(3 + L, j + 12). Value = nCount(L, j)
268
      Next i
269
      Next L
270
271
272
     '-----FORMATTING-----
273
274
     'widen first four columns
275
     Columns("A:D").Select
276
     Columns("A:D").EntireColumn.AutoFit
277
278 'format site summary table
279
     Range("F4:F10").Select
280
     With Selection
281
        .HorizontalAlignment = xlRight
282 End With
283
     Range("G2:G10").Select
284
     With Selection
285
        .HorizontalAlignment = xlCenter
286
     End With
287
288
     Range("F1:G12").Select
289
     Selection.Borders(xlDiagonalDown).LineStyle = xlNone
290
     Selection.Borders(xlDiagonalUp).LineStyle = xlNone
291
     With Selection.Borders(xlEdgeLeft)
292
        .LineStyle = xlContinuous
        .Weight = xlMedium
293
294
        .ColorIndex = xlAutomatic
295 End With
296
     With Selection.Borders(xlEdgeTop)
297
        .LineStyle = xlContinuous
```

```
298
        .Weight = xlMedium
299
        .ColorIndex = xlAutomatic
300
     End With
301
     With Selection.Borders(xlEdgeBottom)
302
        .LineStyle = xlContinuous
303
        .Weight = xlMedium
304
        .ColorIndex = xlAutomatic
305
     End With
306
     With Selection.Borders(xlEdgeRight)
307
        .LineStyle = xlContinuous
308
        .Weight = xlMedium
309
        .ColorIndex = xlAutomatic
310 End With
311
     Selection.Borders(xIInsideVertical).LineStyle = xINone
312
     Selection.Borders(xlInsideHorizontal).LineStyle = xlNone
313
314
     Columns("F:F").Select
315
      Selection.columnwidth = 37#
     Columns("G:G").Select
317
      Selection.columnwidth = 14.7
318
     Range("F1:G1").Select
319
     With Selection.Interior
320
        .Pattern = xlSolid
321
        .PatternColorIndex = xlAutomatic
322
        .ThemeColor = xlThemeColorDark2
323
        TintAndShade = -9.99786370433668E-02
324
        .PatternTintAndShade = 0
325
     End With
326
327
     ' end of formatting site summary table
328
329
330
331
     ' format Water-Level Observations Summary Table
332
333
     Range("I1:J12").Select
334
     Selection.Borders(xlDiagonalDown).LineStyle = xlNone
335
     Selection.Borders(xlDiagonalUp).LineStyle = xlNone
336
     With Selection.Borders(xlEdgeLeft)
337
        .LineStyle = xlContinuous
338
        .Weight = xlMedium
339
        .ColorIndex = xlAutomatic
340
     End With
341
     With Selection.Borders(xlEdgeTop)
342
        .LineStyle = xlContinuous
343
        .Weight = xlMedium
344
        .ColorIndex = xlAutomatic
     End With
345
346
     With Selection.Borders(xlEdgeBottom)
347
        .LineStyle = xlContinuous
348
        .Weight = xlMedium
```

```
349
        .ColorIndex = xlAutomatic
350
     End With
     With Selection.Borders(xlEdgeRight)
351
352
        .LineStyle = xlContinuous
353
        .Weight = xlMedium
354
        .ColorIndex = xlAutomatic
355
     End With
      Selection.Borders(xlInsideVertical).LineStyle = xlNone
357
     Selection.Borders(xlInsideHorizontal).LineStyle = xlNone
358
359
        Columns("I:J").Select
360
     Selection.columnwidth = 15
361
     Range("I1:J1").Select
362
     With Selection.Interior
363
        .Pattern = xlSolid
        .PatternColorIndex = xlAutomatic
364
365
        .ThemeColor = xlThemeColorDark2
366
        .TintAndShade = -9.99786370433668E-02
367
        .PatternTintAndShade = 0
368
     End With
369
     Range("I2:J11").Select
370
371
     With Selection
372
        .HorizontalAlignment = xlCenter
373
        .columnwidth = 17
     End With
374
375
376
     ' end of formatting Water-Level Observations Summary Table
377
378
     ' format Water-Level Observations Time Span Summary Table
379
380
     Range("L1:U1").Select
     With Selection.Interior
381
382
        .Pattern = xlSolid
383
        .PatternColorIndex = xlAutomatic
384
        .ThemeColor = xlThemeColorDark2
385
        .TintAndShade = -9.99786370433668E-02
386
        .PatternTintAndShade = 0
387
     End With
388
     Range("M4:U12").Select
389
390
     With Selection
391
        .HorizontalAlignment = xlCenter
392
     End With
393
394
     Columns("L:L").Select
395
     Selection.columnwidth = 21
396
397
     Range("Q13:Q13").Select
398
     With Selection
399
        .HorizontalAlignment = xlCenter
```

```
400
       .Font.Italic = True
401 End With
402
403 '-----
404
405
     Range("A1:A1").Select
406
407
    Application.StatusBar = False
408
409 Application.ScreenUpdating = True
410
411 endTime = Timer
412 elapsedTimeSeconds = endTime - startTime
413 If elapsedTimeSeconds < 0 Then
414 elapsedTimeSeconds = (86400 - startTime) + endTime
415 End If
416 If elapsed Time Seconds >= 60 Then
417 elapsedTime = elapsedTimeSeconds / 60
418 units = "minutes"
419Else
420 elapsedTime = elapsedTimeSeconds
421 units = "seconds"
422 End If
423 MsgBox "observation stats program ended. Elapsed time " & Format(expression:=elapsedTime,
Format:="Standard") & units
424
425
426 End Sub
```

create_xyz_worksheet

```
Public DataLimitSelection As String, P As Boolean, R As Boolean
2 Public S As Boolean, T As Boolean, I As Boolean
3 Public U As Boolean, makeDataWorksheet As Boolean, limited As String, noLimit As Boolean
4 Public isDepthtoWater As Boolean, isWaterElevation As Boolean
5
   Public OutputDataSheet As String, DataWkshtName As String, OutputXYZSheet As String
6 Public ListWkshtName As String, callingSub As String
   Public startDate As Date, endDate As Date
8
9
10
11 Sub create_xyz_worksheet()
   Dim dataSheet As String, DataSelection As String
13
14 'first, get name of worksheet with water-level data
15 lstSelectDataWorksheet.Show
16 dataSheet = DataWkshtName
17
```

18 'next, present choices for ways of limiting subset including

```
19 '- all data in worksheet [A]
20 '- just data from a list of site id's [L]
21 '- just observations between a start and end date [SE]
22 '- just wells with records that span a time period before a start date and after an end date [TS]
23
24 lstSelect Data Limit.Show
25 DataSelection = DataLimitSelection
27 'ask user if they want to keep or exclude limit flagged data, and whether or not they want a data worksheet
28 'with water-level observations
29
30 frmSelectFlags.Show
31
32 ' create the extension for the worksheet name that will contain the xyz information
33
34 Call getWorksheetExtension
35
36 'then select and run the correct sub
37
38 If DataSelection = "A" Then
39 Call xyz From All Data
40 ElseIf DataSelection = "L" Then
41 Call xyz From List
42 ElseIf DataSelection = "SE" Then
43 Call xyz From Dates
44 ElseIf DataSelection = "TS" Then
    Call xyz From POR Span
46 End If
47
48
49 End Sub
50
51 '-----
52 Private Sub getWorksheetExtension()
53
54 limited = " "
55 If Not (P) Then
56
     limited = limited + " no P"
57
     If Not (R) Then
58
      limited = limited + "R"
59
     End If
60
     If Not (S) Then
      limited = limited + "S"
61
62
     End If
63
     If Not (T) Then
      limited = limited + "T"
64
     End If
65
66
     If Not (I) Then
67
      limited = limited + "I"
     End If
68
69
     If Not (U) Then
```

```
70
       limited = limited + "U"
71
      End If
72
73
    ElseIf Not (R) Then
     limited = limited + " no R"
75
     If Not (S) Then
      limited = limited + "S"
76
77
     End If
78
     If Not (T) Then
79
      limited = limited + "T"
80
      End If
81
      If Not (I) Then
      limited = limited + "I"
82
83
     End If
     If Not (U) Then
84
85
      limited = limited + "U"
86
      End If
87
88
    ElseIf Not (S) Then
     limited = limited + "_no_S"
90
     If Not (T) Then
91
     limited = limited + "T"
92
     End If
93
     If Not (I) Then
94
      limited = limited + "I"
95
     End If
96
     If Not (U) Then
97
      limited = limited + "U"
98
     End If
99
100 ElseIf Not (T) Then
101 limited = limited + "_no_T"
102 If Not (I) Then
     limited = limited + "I"
103
104 End If
105 If Not (U) Then
     limited = limited + "U"
106
107 End If
108
109 ElseIf Not (I) Then
110 limited = limited + " no I"
111 If Not (U) Then
     limited = limited + "U"
112
113 End If
114 ElseIf Not (U) Then
115 limited = limited + " no U"
116 End If
117
118 If P And R And S And T And I And U Then
119 noLimit = True
120 Else: noLimit = False
```

```
121 End If
122
123 End Sub
124
125
126
     Private Sub delete Flagged Data(dataSheetToAnalyzeFlags As String)
      Dim Counter As Long, TestedRow As Long
127
128
129
130
     If Not (noLimit) Then
                              ' only go through the flagged data if a deletion was selected
131
      Worksheets(dataSheetToAnalyzeFlags).Activate
132
      TestedRow = 22
133
134
     Application.ScreenUpdating = False 'turns off screen updating
      Application. DisplayStatusBar = True 'makes sure that the statusbar is visible
135
     Application.StatusBar = "Removing Selected Flagged Data"
136
137
138
     Do While (Cells(TestedRow, 2)) > 0
139
        Select Case Cells(TestedRow, 9). Value
                                                 'column containing flag
140
        Case "P"
141
142
          If Not (P) Then
                              'if the P flag is false, the user wishes to delete pumping data
143
            Rows(TestedRow).Delete
144
            TestedRow = TestedRow - 1 'if row deleted, will need to test same row number next loop
145
          End If
        Case "R"
146
147
                              'if the R flag is false, the user wishes to delete recently-pumped data
          If Not (R) Then
148
            Rows(TestedRow).Delete
149
            TestedRow = TestedRow - 1 'if row deleted, will need to test same row number next loop
150
           End If
151
        Case "S"
152
          If Not (S) Then
                              'if the S flag is false, the user wishes to delete nearby pumping data
153
            Rows(TestedRow).Delete
154
            TestedRow = TestedRow - 1
                                         'if row deleted, will need to test same row number next loop
155
          End If
        Case "T"
156
157
                              'if the T flag is false, the user wishes to delete nearby recently pumped data
          If Not (T) Then
158
            Rows(TestedRow).Delete
159
            TestedRow = TestedRow - 1 'if row deleted, will need to test same row number next loop
160
          End If
        Case "I"
161
162
          If Not (I) Then
                              'if the I flag is false, the user wishes to delete injection data
163
            Rows(TestedRow).Delete
164
            TestedRow = TestedRow - 1
                                         'if row deleted, will need to test same row number next loop
165
          End If
        Case "U"
166
167
          If Not (U) Then
                              'if the U flag is false, the user wishes to delete nearby injecting data (ADWR
            only)
168
            Rows(TestedRow).Delete
            TestedRow = TestedRow - 1 'if row deleted, will need to test same row number next loop
169
170
          End If
```

```
End Select
171
172
173
       TestedRow = TestedRow + 1
174
175
     Loop
176
177
     Application.StatusBar = False
178
     Application.ScreenUpdating = True
179
180 End If
181 End Sub
182
183
184 Private Sub make_xyz()
185
186 Dim dataRange As Range
    Dim wlMaxDate As Date, wlMinDate As Date
188 Dim wlMinDepth As Double, wlMaxDepth As Double, wlMaxDecline As Double, wlMaxRise As Double
189 Dim wlMinDepth1 As Double, wlMaxDepth1 As Double, wlMinDepth2 As Double, wlMaxDepth2
     As Double
190 Dim Counter As Long, outputRow As Long, wlMaxRow As Long, wlMinRow As Long
191 Dim siteRowStart As Long, siteRowEnd As Long, outputDataRow As Long
192 Dim wlAverage As Double, wlStDev As Double, totalrows As Double
    Dim sitenumber As Integer
194 Dim siteID As String
195
196
197
     'write column headings to xyz worksheet
198
199
     Sheets(OutputXYZSheet).Cells(4, 1).Value = "Longitude"
200
     Sheets(OutputXYZSheet).Cells(4, 2).Value = "Latitude"
     Sheets(OutputXYZSheet).Cells(4, 3).Value = "Site ID"
201
202
     Sheets(OutputXYZSheet).Cells(4, 4).Value = "Well Numbr"
203
     Sheets(OutputXYZSheet).Cells(4, 5).Value = "Avg WtrLvl"
204
     Sheets(OutputXYZSheet).Cells(4, 6).Value = "StndDev WL"
205
     Sheets(OutputXYZSheet).Cells(4, 7).Value = "n Obsrvtns"
     Sheets(OutputXYZSheet).Cells(4, 8).Value = "1stObsDate"
207
     Sheets(OutputXYZSheet).Cells(4, 9).Value = "1stWLObs"
     Sheets(OutputXYZSheet).Cells(4, 10).Value = "LstObsDate"
209
     Sheets(OutputXYZSheet).Cells(4, 11).Value = "LstWLObs"
     Sheets(OutputXYZSheet).Cells(4, 12).Value = "MinDepthDt"
211
     Sheets(OutputXYZSheet).Cells(4, 13).Value = "MinDepthOb"
     Sheets(OutputXYZSheet).Cells(4, 14).Value = "MaxDepthDt"
212
     Sheets(OutputXYZSheet).Cells(4, 15).Value = "MaxDepthOb"
214
     Sheets(OutputXYZSheet).Cells(4, 16).Value = "WellRecord"
215
     Sheets(OutputXYZSheet).Cells(4, 17).Value = "MaxDecline"
216
     Sheets(OutputXYZSheet).Cells(4, 18).Value = "MaxRise"
217
     Sheets(OutputXYZSheet).Cells(4, 19).Value = "Hole Depth"
218
     Sheets(OutputXYZSheet).Cells(4, 20).Value = "Well Depth"
219
     Sheets(OutputXYZSheet).Cells(4, 21).Value = "LandSurfElv"
220
     Sheets(OutputXYZSheet).Cells(4, 22).Value = "Hydrograph"
```

```
221
222
     If isDepthtoWater Then
223
       Sheets(OutputXYZSheet).Cells(4, 12).Value = "MinDepthDt"
224
       Sheets(OutputXYZSheet).Cells(4, 13).Value = "MinDepthOb"
225
       Sheets(OutputXYZSheet).Cells(4, 14).Value = "MaxDepthDt"
226
       Sheets(OutputXYZSheet).Cells(4, 15).Value = "MaxDepthOb"
227
      ElseIf isWaterElevation Then
228
       Sheets(OutputXYZSheet).Cells(4, 12).Value = "MinElevnDt"
229
       Sheets(OutputXYZSheet).Cells(4, 13).Value = "MinElevnOb"
230
       Sheets(OutputXYZSheet).Cells(4, 14).Value = "MaxElevnDt"
231
       Sheets(OutputXYZSheet).Cells(4, 15).Value = "MaxElevnOb"
232
     End If
233
234 siteRowStart = 22
235 outputRow = 5
236 outputDataRow = 22
237 Worksheets(OutputDataSheet). Activate 'do all the work on the subset data worksheet
238
239
     Application.ScreenUpdating = False 'turns off screen updating
240
     Application.DisplayStatusBar = True 'makes sure that the statusbar is visible
241
     Application.StatusBar = "Creating XY Data Worksheet"
242
243
244
     'Main loop back to here------
245
     Do While (Cells(siteRowStart, 2)) > 0
                                       ' save siteID
     siteID = Cells(siteRowStart, 2)
246
247
      ' first, get the range of current site id
248
        Counter = siteRowStart
249
        Do While (Cells(Counter, 2) = Cells(Counter + 1, 2))
250
          Counter = Counter + 1
          siteRowEnd = Counter
251
252
        Loop
253
      'This is in case there is only 1 line of data
254
        If siteRowEnd <= siteRowStart Then
255
          siteRowEnd = siteRowStart
256
        End If
257
258
259
      ' Set the range of data for this site id, then do the math
260
261
        Set dataRange = Range(Cells(siteRowStart, 8), Cells(siteRowEnd, 8))
262
263
     'Compute average and standard deviation of water level elevation, and count sample size
264
        n = WorksheetFunction.Count(dataRange)
265
        wlAverage = WorksheetFunction.Average(dataRange)
266
        If n > 1 Then
267
          wlStDev = WorksheetFunction.StDev(dataRange)
268
        Else: wlStDev = -9999
269
        End If
270
271
     'Find max and min water levels in data range
```

```
272
        wlMinDepth = 99999 'initialize max and min holders
273
        wlMaxDepth = -99999 '
274
        wlMinDepth1 = 99999
275
        wlMinDepth2 = 99999
276
        wlMaxDepth1 = -99999
277
        wlMaxDepth2 = -99999
278
279
        For Counter = siteRowStart To siteRowEnd
280
        Set curCell = Cells(Counter, 8) 'row Counter, col 8 (depth to water level below land surface or
            water-level elevation)
281
         If (curCell >= wlMaxDepth And IsDate(Cells(Counter, 7))) Then
282
          wlMaxDepth = curCell
283
          wlMaxDate = Cells(Counter, 7) 'set date of maximum water level depth, or maximum water-level
            elevation
284
          wlMaxRow = Counter
285
         End If
286
        Next Counter
287
288
        For Counter = siteRowStart To siteRowEnd
289
        Set curCell = Cells(Counter, 8) 'row Counter, col 8 (depth to water level below land surface or
            water-level elevation)
290
         If (curCell <= wlMinDepth And IsDate(Cells(Counter, 7))) Then
291
          wlMinDepth = curCell
292
          wlMinDate = Cells(Counter, 7) 's et date of minimum water level depth, or minimum water-level
            elevation
293
          wlMinRow = Counter
294
         End If
295
        Next Counter
296
297
        ' find the smallest WL value (minimum depth/elevation) prior to the larget value (maximum
          depth/elevation)
298
        For Counter = siteRowStart To wlMaxRow
299
         Set curCell = Cells(Counter, 8) 'row Counter, col 8 (depth to water level below land surface or
          water-level elevation))
300
          If (curCell <= wlMinDepth1 And IsDate(Cells(Counter, 7))) Then
301
           wlMinDepth1 = curCell
302
           wlMinDate1 = Cells(Counter, 7) 'set date of early smallest WL value
303
           wlMin1Row = Counter
304
          End If
305
        Next Counter
306
307
        ' find the smallest WL value (minimum depth/elevation) after largest value (maximum depth/elevation)
308
        For Counter = wlMaxRow To siteRowEnd
309
          Set curCell = Cells(Counter, 8) 'row Counter, col 8 (depth to water level below land surface or
            water-level elevation))
310
           If (curCell <= wlMinDepth2 And IsDate(Cells(Counter, 7))) Then
311
             wlMinDepth2 = curCell
312
             wlMinDate2 = Cells(Counter, 7) 's et date of late smallest WL
             wlMin2Row = Counter
313
314
           End If
315
        Next Counter
```

```
316
317
        ' find the largest WL value (maximum depth/elevation) prior to smallest (minimum depth/elevation)
        For Counter = siteRowStart To wlMinRow
318
319
         Set curCell = Cells(Counter, 8) 'row Counter, col 8 (depth to water level below land surface or
            water-level elevation))
320
          If (curCell >= wlMaxDepth1 And IsDate(Cells(Counter, 7))) Then
321
           wlMaxDepth1 = curCell
322
           wlMaxDate1 = Cells(Counter, 7) ' set date of early largest WL value
323
           wlMax1Row = Counter
324
          End If
        Next Counter
325
326
327
        ' find the largest WL value (maximum depth/elevation) after smallest (minimum depth/elevation)
328
        For Counter = wlMinRow To siteRowEnd
329
          Set curCell = Cells(Counter, 8) 'row Counter, col 8 (depth to water level below land surface or
            water-level elevation))
330
           If (curCell >= wlMaxDepth2 And IsDate(Cells(Counter, 7))) Then
331
            wlMaxDepth2 = curCell
332
            wlMaxDate2 = Cells(Counter, 7) ' set date of late largest WL value
333
            wlMax2Row = Counter
334
           End If
335
        Next Counter
336
337
        If wlMaxDepth = wlMinDepth1 Then
338
         wlMaxDecline = 0
339
        Else
340
         wlMaxDecline = wlMaxDepth - wlMinDepth1 'this will be maximum rise for water-level elevations
341
342
        If wlMaxDepth = wlMinDepth2 Then
         wlMaxRise = 0
343
344
        Else
345
         wlMaxRise = wlMaxDepth - wlMinDepth2
                                                     'this will be maximum decline for water-level elevations
346
        End If
347
348
        If (wlMaxDepth1 - wlMinDepth) > wlMaxRise Then
349
         wlMaxRise = (wlMaxDepth1 - wlMinDepth) 'maximum decline for water-level elevations
350
        If (wlMaxDepth2 - wlMinDepth) > wlMaxDecline Then
351
352
         wlMaxDecline = (wlMaxDepth2 - wlMinDepth) 'maximum rise for water-level elevations
353
        End If
354
355
        'Write summary output info to xyz worksheet
356
       Sheets(OutputXYZSheet).Cells(outputRow, 1).Value = Worksheets(OutputDataSheet).
       Cells(siteRowStart, 5).
        Value 'Longitude
357
          Sheets(OutputXYZSheet).Cells(outputRow, 2).Value = Worksheets(OutputDataSheet).
        Cells(siteRowStart, 4). Value 'Latitude
358
        Sheets(OutputXYZSheet).Cells(outputRow, 3).Value = Worksheets(OutputDataSheet).Cells(siteRow
        Value 'site ID
359
        Sheets(OutputXYZSheet).Cells(outputRow, 4).Value = Worksheets(OutputDataSheet).
        Cells(siteRowStart, 3).
```

```
Value 'well number
```

- 360 Sheets(OutputXYZSheet).Cells(outputRow, 5).Value = wlAverage
- 361 Sheets(OutputXYZSheet).Cells(outputRow, 6).Value = wlStDev
- 362 Sheets(OutputXYZSheet).Cells(outputRow, 7).Value = n
- 363 Sheets(OutputXYZSheet).Cells(outputRow, 8).Value = Worksheets(OutputDataSheet).Cells(siteRowStart, 7). Value 'first water-level observation date
- 364 Sheets(OutputXYZSheet).Cells(outputRow, 9).Value = Worksheets(OutputDataSheet).Cells(siteRowStart, 8). Value 'first water-level observation
- Sheets(OutputXYZSheet).Cells(outputRow, 10).Value = Worksheets(OutputDataSheet).Cells(siteRowEnd, 7). Value 'last water-level observation date
- 366 Sheets(OutputXYZSheet).Cells(outputRow, 11).Value = Worksheets(OutputDataSheet).Cells(siteRowEnd, 8). Value 'last water-level observation
- 367 Sheets(OutputXYZSheet).Cells(outputRow, 12).Value = wlMinDate 'date of min depth water-level observa tion or min water-level elevation
- 368 Sheets(OutputXYZSheet).Cells(outputRow, 13).Value = wlMinDepth 'min depth water-level observation or min water-level elevation
- 369 Sheets(OutputXYZSheet).Cells(outputRow, 14).Value = wlMaxDate 'date of max depth water-level observation or max water-level elevation
- 370 Sheets(OutputXYZSheet).Cells(outputRow, 15).Value = wlMaxDepth 'max depth water-level observation or max water-level elevation
- 371 Sheets(OutputXYZSheet).Cells(outputRow, 16).Value = (Worksheets(OutputDataSheet).Cells(siteRowEnd, 7). Value Worksheets(OutputDataSheet).Cells(siteRowStart, 7).Value) + 1 'length of site water-level record in days
- 372 Sheets(OutputXYZSheet).Cells(outputRow, 19).Value = Worksheets(OutputDataSheet).Cells(siteRowStart, 13). Value 'hole depth
- 373 Sheets(OutputXYZSheet).Cells(outputRow, 20).Value = Worksheets(OutputDataSheet).Cells(siteRowStart, 14). Value 'well depth
- Sheets(OutputXYZSheet).Cells(outputRow, 21).Value = Worksheets(OutputDataSheet).Cells(siteRowStart, 10). Value 'altitude of land surface
- 375 Sheets(OutputXYZSheet).Cells(outputRow, 22).Value = "PATH\" & siteID & ".pdf" 'filename for possible linked hydrograph

377 Sheets(OutputXYZSheet).Cells(outputRow, 16384).Formula = "=TEXT(C" & outputRow & ", "", "#############"")" 'this formula necessary to make site ids appear as text in ArcMap attribute table

379 If isDepthtoWater Then

- 380 Sheets(OutputXYZSheet).Cells(outputRow, 17).Value = wlMaxDecline
- 381 Sheets(OutputXYZSheet).Cells(outputRow, 18).Value = wlMaxRise
- 382 ElseIf is Water Elevation Then
- 383 Sheets(OutputXYZSheet).Cells(outputRow, 17).Value = wlMaxRise
- 384 Sheets(OutputXYZSheet).Cells(outputRow, 18).Value = wlMaxDecline
- 385 End If

386

376

378

- outputRow = outputRow + 1 'increment row for output worksheet
- 388 siteRowStart = siteRowEnd + 1 'increment to next site id on data worksheet
- 390 'Go back to data subset worksheet
- 391 Worksheets(OutputDataSheet).Activate

392

389

393 Loop

```
'Loop back to beginning of main Do While------
395
396
    'Once finished, do some formatting on xyz worksheet
397
398
     Worksheets(OutputXYZSheet).Activate
399
400
     Range("A4:B" & outputRow + 2).NumberFormat = "0.000000" 'lat/long
     Range("E4:F" & outputRow + 2). NumberFormat = "0.0" 'water levels
401
402
403
     Range("XFD5:XFD" & outputRow).Copy
404
     Range("C5:C5").PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
405
       :=False, Transpose:=False
406
     Columns("XFD:XFD").Delete Shift:=xlToLeft
407
408
     Sheets(OutputXYZSheet).Cells.EntireColumn.AutoFit
409
     Columns("A:A").columnwidth = 20
410
411
412
     Application.StatusBar = False
413
     Application.ScreenUpdating = True
414
415
416
           End Sub
417
418
419
     Private Sub xyz_From All Data()
420
421
     Dim dataSheet As String
422
     Dim startTime As Long, endTime As Long, elapsedTimeSeconds As Long, elapsedTime As Variant
423
     Dim units As String424
425
     dataSheet = DataWkshtName
426
427
     'Create worksheet to hold xyz information and name it
428
429
     OutputXYZSheet = "xyz ALL" + limited
     Set NewSheet1 = Worksheets.Add
430
431
     NewSheet1.Name = OutputXYZSheet
432
     Sheets(OutputXYZSheet).Move After:=Sheets(Worksheets.Count)
433
434
     startTime = Timer
435
436
     Sheets(OutputXYZSheet).Cells(1, 1).Value = "Summary of ALL SITES on data worksheet"
437
     If limited > " " Then
438
      Sheets(OutputXYZSheet).Cells(2, 1).Value = limited + "FLAGGED OBSERVATIONS"
439
     End If
440
     Range("A1:D2").Interior.Color = 65535
441
442
443
     OutputDataSheet = "data ALL" + limited
444
445 'Make a copy of original data worksheet
```

```
446
447
     Sheets(dataSheet).Copy After:=Sheets(Worksheets.Count)
448
     Sheets(Worksheets.Count).Name = OutputDataSheet
449
450 'call sub that sorts through subset data worksheet, deleting appropriate flagged data
451 Call delete Flagged Data(OutputDataSheet)
452
453 'call sub that creates xyz worksheet from subset data worksheet
454 Call make_xyz
455
456 Range("A1").Select
457
458 endTime = Timer
459 elapsedTimeSeconds = endTime - startTime
460 If elapsedTimeSeconds < 0 Then
461 elapsedTimeSeconds = (86400 - startTime) + endTime
462
      End If
463 If elapsedTimeSeconds >= 60 Then
464 elapsedTime = elapsedTimeSeconds / 60
465 units = "minutes"
466 Else
467 elapsedTime = elapsedTimeSeconds
468 units = "seconds"
469 End If
470 MsgBox "xyz From All Data program ended. Elapsed time " & Format(expression:=elapsedTime,
     Format:="Standard") & units
471
472 End Sub
473
475 Private Sub xyz From List()
476
477 Dim dataSheet As String, listDataSheet As String
478 Dim SiteIDRow As Long, outputRow As Long, AllDataRow As Long, CopyRow As Long
479 Dim SiteIDFind As String, SiteFound As Boolean, allRowStart As Long, allRowEnd As Long
480 Dim copyRange As String
481 Dim startTime As Long, endTime As Long, elapsedTimeSeconds As Long, elapsedTime As Variant
482 Dim units As String
483
484 ' DATA WORKSHEET MUST FIRST BE SORTED BY SITE ID AND BY DATE
485 'SITE LIST MUST ALSO BE SORTED BY SITE ID, WITH SITES IDS IN FIRST COLUMN
     BEGINNING IN SECOND ROW
486
487
     lstSelectListWorksheet.Show
     listDataSheet = ListWkshtName
488
489
     dataSheet = DataWkshtName
490
491
492
     ' open and name the xyz output worksheet
493
494
     OutputXYZSheet = "xyz LIST" + limited
```

```
Set NewSheet1 = Worksheets.Add
    496
          NewSheet1.Name = OutputXYZSheet
          Sheets(OutputXYZSheet).Move After:=Sheets(Worksheets.Count)
    497
    498
    499
          startTime = Timer
    500
    501
          Sheets(OutputXYZSheet).Cells(1, 1).Value = "Summary of LIST OF SITES on data worksheet"
          If limited > " " Then
    502
           Sheets(OutputXYZSheet).Cells(2, 1).Value = limited + "FLAGGED OBSERVATIONS"
    503
    504
          End If
    505
    506
          Range("A1:D2").Interior.Color = 65535
    507
    508' Open working copy of water-level data
    509
          Sheets(dataSheet).Copy After:=Sheets(Worksheets.Count)
    510
          Sheets(Worksheets.Count).Name = "tempDataSheet"
    511
    512
          Call delete Flagged Data("tempDataSheet")
    513
    514 '
          Open subset data worksheet and copy header info
    515
    516
          OutputDataSheet = "data LIST" + limited
          Set NewSheet1 = Worksheets.Add
    517
    518
          NewSheet1.Name = OutputDataSheet
          Sheets(OutputDataSheet).Move After:=Sheets(Worksheets.Count)
    519
    520
    521
          Sheets(dataSheet).Select
    522
          Rows("1:21").Select
    523
          Selection.Copy
          Sheets(OutputDataSheet).Select
    524
    525
          ActiveSheet.Paste
    526
    527
          SiteIDRow = 2
                            'initialize counters
    528
         AllDataRow = 22
    529
          outputRow = 22
    530
    531
          Application.ScreenUpdating = False 'turns off screen updating
          Application.DisplayStatusBar = True 'makes sure that the statusbar is visible
    532
    533
          Application.StatusBar = "Copying Data for Selected Wells"
    534
    535
          ' Read in site ID from list------
          Do While (Sheets(listDataSheet).Cells(SiteIDRow, 1)) > 0
    536
    537
           SiteIDFind = Sheets(listDataSheet).Cells(SiteIDRow, 1).Value
    538
           SiteFound = False
    539
    540
          ' Find data with this site ID, copy it to new data worksheet
    541
    542
          'first, find where siteID begins
    543
          Worksheets("tempDataSheet").Activate
    544
          Counter = AllDataRow
                                      'because data is sorted by site id, only need to start looking where last search
stopped
```

```
545
       Do While (Cells(Counter, 2)) > 0
546
       If Cells(Counter, 2) = SiteIDFind Then
547
        allRowStart = Counter
548
        SiteFound = True
549
        Exit Do
550
        End If
551
        Counter = Counter + 1
552
        Loop
553
554
     If (Not SiteFound) Then
                                   'if no data is found for site ID, reset starting point for search
       Worksheets(listDataSheet).Cells(SiteIDRow, 1).Interior.ColorIndex = 36
555
                                                                                'highlight site ID not
556
       Worksheets(listDataSheet).Cells(SiteIDRow, 2).Value = "site not found in dataset"
557
      GoTo 333
                                'and go to next site ID in list
     End If
558
559
     'then, find where this siteID ends
560
      allRowEnd = Counter ' in case there is only 1 row of data
     Do While (Cells(Counter, 2) = Cells(Counter + 1, 2))
562
563
        Counter = Counter + 1
        allRowEnd = Counter
564
565
     Loop
566
567
      'copy these rows over to new worksheet
568
         copyRange = allRowStart & ":" & allRowEnd
569
         Rows(copyRange).Select
570
         Selection.Copy
571
         Sheets(OutputDataSheet).Select
572
         Rows(outputRow).Select
573
         ActiveSheet.Paste
574
575
         outputRow = outputRow + (allRowEnd - allRowStart + 1) 'location on new worksheet for next paste
576
         AllDataRow = allRowEnd + 1
                                                       'start location of search for next site ID
577
             SiteIDRow = SiteIDRow + 1
578
     333
                                                          'location of next site ID
             'back to read in next site ID -----
579
580
581
582
     ' call sub that creates XYZ worksheet and compiles attribute table information
583
     Call make xyz
584
585
     Range("A1").Select
586
587
     ' delete temporary data sheet
588
     Application.DisplayAlerts = False
589
     Sheets("tempDataSheet").Delete
590
     Application.DisplayAlerts = True
591
592 endTime = Timer
593
     elapsedTimeSeconds = endTime - startTime
```

```
594 If elapsedTimeSeconds < 0 Then
595 elapsedTimeSeconds = (86400 - startTime) + endTime
596 End If
597 If elapsedTimeSeconds >= 60 Then
598 elapsedTime = elapsedTimeSeconds / 60
599 units = "minutes"
600 Else
601 elapsedTime = elapsedTimeSeconds
602 units = "seconds"
603 End If
604 MsgBox "xyz From List program ended. Elapsed time " & Format(expression:=elapsedTime,
     Format:="Standard") & units
605
606 End Sub
607
608 '-----
609 Private Sub xyz From Dates()
610 Dim dataSheet As String, Counter As Long
611 Dim startTime As Long, endTime As Long, elapsedTimeSeconds As Long, elapsedTime As Variant
612 Dim units As String
613
614
615
     dataSheet = DataWkshtName
616
617
      Select range of water levels based on input start, and end dates
       callingSub = "xyz From Dates"
618
       lstSelectDates.Show
619
620
621
622
    'Create worksheet to hold xyz information and name it
623
624
     OutputXYZSheet = "xyz DATES" + limited
625
     Set NewSheet1 = Worksheets.Add
626 NewSheet1.Name = OutputXYZSheet
     Sheets(OutputXYZSheet).Move After:=Sheets(Worksheets.Count)
627
628 startTime = Timer
629
630
     Sheets(OutputXYZSheet).Cells(1, 1).Value = "Summary of OBSERVATIONS BETWEEN" &
     startDate & "AND " & endDate
631
     If limited > " " Then
      Sheets(OutputXYZSheet).Cells(2, 1).Value = limited + "FLAGGED OBSERVATIONS"
632
633
634
635
     Range("A1:D2").Interior.Color = 65535
636
637
     OutputDataSheet = "data DATES" + limited
638
639' Make a copy of original data worksheet
640
641
     Sheets(dataSheet).Copy After:=Sheets(Worksheets.Count)
642
     Sheets(Worksheets.Count).Name = OutputDataSheet
```

```
643
644
     ' Delete all rows of observations that fall outside of the specified user-input range
645
646 Application. Screen Updating = False 'turns off screen updating
     Application.DisplayStatusBar = True 'makes sure that the statusbar is visible
648
    Application.StatusBar = "Copying Data for Selected Date Range"
649
650
     Worksheets(OutputDataSheet).Activate
     Counter = 22
651
     Do While (Cells(Counter, 2)) > 0
652
653
      If Cells(Counter, 7) < startDate Or Cells(Counter, 7) > endDate Then
654
        Rows(Counter).Delete
655
        Counter = Counter - 1
                              'if row deleted, will need to test same row number next loop
656
       End If
657
       Counter = Counter + 1
658
     Loop
659
660
     ' call sub that sorts through subset data worksheet, deleting appropriate flagged data
661
662
     Call delete Flagged Data(OutputDataSheet)
663
664
     ' call sub that creates xyz worksheet from subset data worksheet
665
     Call make xyz
666
     Range("A1").Select
667
668
669 endTime = Timer
670 elapsedTimeSeconds = endTime - startTime
671 If elapsedTimeSeconds < 0 Then
672 elapsedTimeSeconds = (86400 - startTime) + endTime
673 End If
674 If elapsedTimeSeconds >= 60 Then
675 elapsedTime = elapsedTimeSeconds / 60
676 units = "minutes"
677 Else
678 elapsedTime = elapsedTimeSeconds
679 units = "seconds"
680 End If
681 MsgBox "xyz From Dates program ended. Elapsed time " & Format(expression:=elapsedTime,
     Format:="Standard") & units
682
683 End Sub
684
685 '-----
686 Private Sub xyz From POR Span()
687 Dim recordStartDate As Date, recordEndDate As Date
688 Dim allRow As Long, siteRowStart As Long, siteRowEnd As Long, dataSheet As String
689 Dim startTime As Long, endTime As Long, elapsedTimeSeconds As Long, elapsedTime As Variant
690 Dim units As String
691
692 'Get user-specified cutoff dates to define desired time span
```

```
callingSub = "xyz_From_POR_Span"
694
     lstSelectDates.Show
695
696
697
     dataSheet = DataWkshtName
698
699
    'Create worksheet to hold xyz information and name it
700
701
     OutputXYZSheet = "xyz SPAN" + limited
702
     Set NewSheet1 = Worksheets.Add
703
     NewSheet1.Name = OutputXYZSheet
704
     Sheets(OutputXYZSheet).Move After:=Sheets(Worksheets.Count)
705
706
     Sheets(OutputXYZSheet).Cells(1, 1).Value = "Summary of SITES WITH RECORDS BEGINNING BEFORE"
     & startDate & "AND ENDING AFTER" & endDate
     If limited > " " Then
707
708
     Sheets(OutputXYZSheet).Cells(2, 1).Value = limited + "FLAGGED OBSERVATIONS"
709
     End If
710
711
     Range("A1:G2").Interior.Color = 65535
712
713
     OutputDataSheet = "data SPAN" + limited
714
715' Make a copy of original data worksheet
716
717
     Sheets(dataSheet).Copy After:=Sheets(Worksheets.Count)
718
     Sheets(Worksheets.Count).Name = OutputDataSheet
719
     startTime = Timer
720
721
     'Call sub that sorts through subset data worksheet, deleting appropriate flagged data
722
     Call delete Flagged Data(OutputDataSheet)
723
724
725
      ' do all work on copy of data worksheet
726
     Worksheets(OutputDataSheet).Activate
727
728
      ' initialize counters
729
     allRow = 22
730
731
     Application.ScreenUpdating = False 'turns off screen updating
     Application.DisplayStatusBar = True 'makes sure that the statusbar is visible
732
     Application.StatusBar = "Copying Data for Wells with Specified Period of Record"
733
734
735
     ' Loop through all site ids on copy of data worksheet
736
     Do While (Cells(allRow, 2) > 0)
737
738
     ' find first and last observation dates for site id
739
     Counter = allRow
740
     siteRowStart = allRow
741
     siteRowEnd = siteRowStart
742 recordStartDate = Cells(siteRowStart, 7)
```

```
743
        Do While (Cells(Counter, 2) = Cells(Counter + 1, 2))
744
          Counter = Counter + 1
745
          siteRowEnd = Counter
746
747
        recordEndDate = Cells(siteRowEnd, 7)
748
749
        'if start of record is after user-specified start date or end of record is before user-specified end date,
      delete records for site id
750
       If (recordStartDate > startDate) Or (recodEndDate < endDate) Then
        Rows(siteRowStart & ":" & siteRowEnd).Delete
751
        allRow = siteRowStart 'if site id data was deleted, will need to start search over at this row
752
753
     Else
754
        allRow = siteRowEnd + 1 'if site id data kept, go on to next site id
755
     End If
756
757
     Loop 'go back to next site id
758
759
760
      Call sub that creates XYZ worksheet and compiles attribute table information
761
        Call make xyz
762
763
        Range("A1").Select
764
765
      endTime = Timer
      elapsedTimeSeconds = endTime - startTime
766
     If elapsedTimeSeconds < 0 Then
768
       elapsedTimeSeconds = (86400 - startTime) + endTime
769
      End If
770
     If elapsedTimeSeconds >= 60 Then
771
       elapsedTime = elapsedTimeSeconds / 60
772
       units = "minutes"
773
      Else
774
       elapsedTime = elapsedTimeSeconds
775
       units = "seconds"
776
     End If
777
     MsgBox "xyz From POR Span program ended. Elapsed time " & Format(expression:=elapsedTime,
778
      Format:="Standard") & units
779
780 End Sub
```

makeExcelHydrographs

- 1 Public DataWkshtName As String, DataWkbkName As String, MinDateAxis As Date, MaxDateAxis As Date
- 2 Public MinDepthAxis As Long, MaxDepthAxis As Long, isMinDepth As Boolean, isMaxDepth As Boolean
- 3 Public isMinDate As Boolean, isMaxDate As Boolean, isDepthtoWater As Boolean, isWaterElevation As Boolean

56 Sub makeExcelHydrographs()

4

```
7
8
    'This VBA program creates hydrograph charts from data supplied in a data worksheet.
9
    'These hydrographs can be hyperlinked to well location in ArcGIS.
10
11 Dim Counter As Long, allRowStart As Long, allRowEnd As Long, nonUSGSRow As Integer
12 Dim added As Integer, RowCount As Integer, nObs As Integer, minObs As Integer, wkbookNum As Integer
13 Dim totalCharts As Integer
14 Dim SiteID As String, wellInfo As String, chartName As String, wellNameText As String
15 Dim wellLong As String, wellLat As String, wellAlt As String, wellDepth As String
16 Dim xRangeString As String, yRangeString As String
17 Dim xRangeAll As Range, yRangeAll As Range
18 Dim xRangeLegend As Range, yRangeLegend As Range
19 Dim allDataSheet As String
20 Dim xLegend As String, yLegend As String
21 Dim NewSeriesxRange(255) As String, NewSeriesyRange(255) As String
22 Dim startDate As String, endDate As String, currentWorkbookName As String, SolidLineData As String
23 Dim minLate As Double, maxLate As Double
24 Dim dateStart As Date, dateEnd As Date
25 Dim BasinName As String
26 Dim startTime As Long, endTime As Long, elapsedTimeSeconds As Long
27 Dim elapsedTime As Variant, units As String
28
29
30 DataWkbkName = ActiveWorkbook.Name
31
32
     lstSelectWorksheet.Show
                                    'get worksheet with data from user
33
     lstSelectAxes Show
                                  'get information on how water-level data is provided (depth or altitude)
    and how to handle axes
34
     allDataSheet = DataWkshtName
35
     startTime = Timer
36
37
38
     currentWorkbookName = ActiveWorkbook.Name
39
     workbookName = ActiveWorkbook.Name
40
     dataWorkbookName = ActiveWorkbook.Name
41
     RowCount = 2
42
     wkbookNum = 1
43
     totalCharts = 0
44
45
      SolidLineData = "SolidLineData" & wkbookNum
46
47
      ' open a new worksheet to contain <= 1-year observation data for plotting
48
      Set NewSheet1 = Worksheets.Add
49
     NewSheet1.Name = SolidLineData
50
     Sheets(NewSheet1.Name).Move After:=Sheets(Worksheets.Count)
51
      Worksheets(SolidLineData).Cells(1, 1).
      Value = "Date"
52
     Worksheets(SolidLineData).Cells(1, 2).
      Value = "WL_Depth/Altitude"
53
      Worksheets(SolidLineData).Cells(2, 1).Value = 33556
                                                           'dummy data
54
     Worksheets(SolidLineData).Cells(2, 2).Value = 100
```

```
55
56
     allRowStart = 22
                          '22
57
                                                   'this is the row on the Solidline data worksheet
     localRowCounter = 2
58
59
     Worksheets(allDataSheet).Activate
60
61
62
     'Loop back to here after creating each chart for each site ID
63
      ·_____
      ٠_____
64
65
     Do While (Workbooks(dataWorkbookName). Worksheets(allDataSheet). Cells(allRowStart, 2)) > 0
66
     (_____
      ٠_____
67
68
69
     Workbooks(dataWorkbookName). Worksheets(allDataSheet). Activate
70
71
     ' first, get the range of current site id
72
     Counter = allRowStart
73
     allRowEnd = allRowStart
74
     Do While (Cells(Counter, 2) = Cells(Counter + 1, 2))
75
        Counter = Counter + 1
76
        allRowEnd = Counter
77
     Loop
78
79
     'set range in between
80
        xRangeString = "G" & allRowStart & ":G" & allRowEnd 'date of water measurement
81
        yRangeString = "H" & allRowStart & ":H" & allRowEnd 'depth to water below land surface
82
     Set xRangeAll=Workbooks(dataWorkbookName).Worksheets(allDataSheet).Range(xRangeString)
     'date of water measurement
83
     Set yRangeAll =Workbooks(dataWorkbookName). Worksheets(allDataSheet). Range(yRangeString)
     'depth to water below land surface
84
85
     'This is only for the legend
86
     xLegend = "G" & allRowStart
87
     yLegend = "H" & allRowStart
     Set xRangeLegend = Workbooks(dataWorkbookName).Worksheets(allDataSheet).Range(xLegend)
88
89
     Set yRangeLegend Workbooks(dataWorkbook Name). Worksheets(allDataSheet). Range(yLegend)
90
91
     'save information for hydrograph header
92
     SiteID = Cells(allRowStart, 2)
                                      'save siteID
93
     wellNameText = Cells(allRowStart, 3) 'save well name
94
      If IsEmpty(Cells(allRowStart, 3)) Then
95
       wellNameText = "unknown"
96
      End If
97
     wellLong = Cells(allRowStart, 5)
                                       ' save well longitude
                                      ' save well latitude
98
     wellLat = Cells(allRowStart, 4)
99
     wellAlt = Round(Cells(allRowStart, 10), 0)
                                                 ' save well altitude
100
     If IsEmpty(Cells(allRowStart, 10)) Or wellAlt = "-9999" Then in case data is missing or labeled -9999
101
       wellAlt = "unknown"
102 End If
     wellDepth = Cells(allRowStart, 14) 'save well depth
103
```

```
104
       If IsEmpty(Cells(allRowStart, 14)) Or wellDepth = "-9999" Then 'in case data is missing or labeled -9999
105
         wellDepth = "unknown"
106
       End If
107
108
      'get the minimum and max depths and dates for chart axes
109
      minYear = Year(Workbooks(dataWorkbookName). Worksheets(allDataSheet). Cells(allRowStart, 7). Value)
110
      maxYear = Year(Workbooks(dataWorkbookName).Worksheets(allDataSheet).Cells(allRowEnd, 7).Value)
111
112
      minDepth = 9999
113
      maxDepth = -9999
114
     For Counter = allRowStart To allRowEnd
115
       If Cells(Counter, 8) < minDepth Then
116
        minDepth = Cells(Counter, 8)
117
       End If
118
       If Cells(Counter, 8) > maxDepth Then
119
        maxDepth = Cells(Counter, 8)
120
       End If
121
     Next Counter
122
123
      'find observations in range that are at most 1 year apart
124
      nNewSeries = 0
125
     Counter = allRowStart
     Do While Counter <= allRowEnd
126
127
        If Counter = allRowEnd Then
                                             'Can't compare counter+1
128
      GoTo 100
129
      End If
130
131
      If Cells(Counter + 1, 7) - Cells(Counter, 7) <= 365 Then 'if dates are within 1 year
132
           nNewSeries = nNewSeries + 1
                                                     'count number of blocks of data for later
133
       localRowCounter = localRowCounter + 1
134
       NewSeriesRowStart = localRowCounter
135
       Workbooks(currentWorkbookName). Worksheets(SolidLineData). Cells(localRowCounter, 1). Value =
     Workbooks(dataWorkbookName). Worksheets(allDataSheet). Cells(Counter, 7). Value 'date
136
       Workbooks(currentWorkbookName).Worksheets(SolidLineData).Cells(localRowCounter, 2).Value =
     Workbooks(dataWorkbookName). Worksheets(allDataSheet). Cells(Counter, 8). Value 'observation
137
138
       For NewCounter = Counter + 1 To allRowEnd
                                                     'check subsequent sequential observation for end of series
139
         If Cells(NewCounter + 1, 7) - Cells(NewCounter, 7) > 365 Then 'found end, so copy data, update counter
     and exit this for
140
         localRowCounter = localRowCounter + 1
141
         Workbooks(currentWorkbookName). Worksheets(SolidLineData). Cells(localRowCounter, 1). Value =
     Workbooks(dataWorkbookName). Worksheets(allDataSheet). Cells(NewCounter, 7). Value 'date
142
       Workbooks(currentWorkbookName). Worksheets(SolidLineData). Cells(localRowCounter, 2). Value =
     Workbooks(dataWorkbookName). Worksheets(allDataSheet). Cells(NewCounter, 8). Value 'observation
         NewSeriesxRange(nNewSeries) = "A" & NewSeriesRowStart & ":A" & localRow Counter 'date of
143
     water measurement
144
         NewSeriesyRange(nNewSeries) = "B" & NewSeriesRowStart & ":B" & localRowCounter 'depth to water
     below land surface
145
       Counter = NewCounter
146
       Exit For
147
       Else
```

```
148
              localRowCounter = localRowCounter + 1
149
              Workbooks(currentWorkbookName).Worksheets(SolidLineData).Cells(localRowCounter, 1).Value =
          Workbooks(dataWorkbookName). Worksheets(allDataSheet). Cells(NewCounter, 7). Value 'date
150
              Workbooks(currentWorkbookName). Worksheets(SolidLineData). Cells(localRowCounter, 2). Value =
         Workbooks (data Workbook Name). Worksheets (all Data Sheet). Cells (New Counter,\ 8). Value \quad `observation' and the property of the property
151
             If NewCounter >= allRowEnd Then
                                                                                           'Can't compare counter+1
              NewSeriesxRange(nNewSeries) = "A" & NewSeriesRowStart & ":A" & localRowCounter 'date of
152
              water measurement
153
             NewSeriesyRange(nNewSeries) = "B" & NewSeriesRowStart & ":B" & localRowCounter 'depth to water
          below land surface
154
                     Counter = NewCounter
155
                     GoTo 100
156
                   End If
157
                  Counter = NewCounter
158
                End If
159
             Next NewCounter
160
            Else
            End If
161
162 100 Counter = Counter + 1
163
           Loop
164
165
166 ' -----add chart -----
         Workbooks(currentWorkbookName).Worksheets(SolidLineData).Activate 'activate new workbook, if necessary
          totalCharts = totalCharts + 1
169
          chartName = SiteID
170
171
172 ActiveSheet.Shapes.AddChart.Select
173 ActiveChart.Location Where:=xlLocationAsNewSheet
174 ActiveChart.Name = chartName
                                                                                            ' make worksheet name the site id
175 ActiveChart.Move After:=Sheets(Worksheets.Count + Charts.Count)
176
177
          ActiveChart.ChartType = xlXYScatter
178
          ActiveChart.SeriesCollection(1).Delete
179
180 'first put in dummy data point in order to make a single-point legend
181
           ActiveChart.SeriesCollection.NewSeries
          ActiveChart.SeriesCollection(1).XValues = xRangeLegend
183
          ActiveChart.SeriesCollection(1).Values = yRangeLegend
184
          ActiveChart.SeriesCollection(1).Name = "Water-Level Observation"
185
186 'next put in all data with dashed line
187
          ActiveChart.SeriesCollection.NewSeries
188 ActiveChart.SeriesCollection(2).XValues = xRangeAll
189
          ActiveChart.SeriesCollection(2).Values = yRangeAll
190 ActiveChart.SeriesCollection(2).Name = "Observations > 1 Year Apart"
191
192 Application.ScreenUpdating = False
          Application.DisplayStatusBar = True 'makes sure that the statusbar is visible
194 Application.StatusBar = "Creating Hydrograph Chart"
```

```
195
196
    'last, put in series of observations that need solid line
       If nNewSeries >= 0 Then
197
198
       For i = 1 To nNewSeries
199
      ActiveChart.SeriesCollection.NewSeries
200
      Active Chart. Series Collection (i+2). XValues = Workbooks (current Workbook Name Worksheets (Solid Line Data). \\
     Range(NewSeriesxRange(i))
201
      ActiveChart.SeriesCollection(i + 2). Values = Workbooks(currentWorkbookNameWorksheets(SolidLineData).
     Range(NewSeriesyRange(i))
202
      ActiveChart.SeriesCollection(i + 2).Name = "delete" & nNewSeries
203
      Next i
204 End If
205
206' insert a legend at the bottom of the chart
     ActiveChart.HasLegend = True
207
208
     ActiveChart.Legend.Select
     Selection. Position = xlBottom
209
210
211 'delete extra entries in legend
212 For i = 3 To ActiveChart.SeriesCollection.Count
213
      ActiveChart.Legend.LegendEntries(3).Select 'the third legend entry will always be the one to delete
214
      Selection.Delete
215
     Next i
216
217
218
219'
      220
221
      'Chart Title and Axes Titles
222
        With ActiveChart
223
        .Axes(xlCategory, xlPrimary).HasTitle = True
224
        .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Date of Observation"
225
        .Axes(xlValue, xlPrimary).HasTitle = True
226
        If isDepthtoWater Then
227
        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Depth to Groundwater Below LSD [feet]"
228
        ElseIf isWaterElevation Then
229
        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Water-Level Altitude [feet AMSL]"
230
        End If
231
     End With
232
233
     'shrink plot area to allow room for well information in header
234
     ActiveChart.PlotArea.Select
235
     Selection.Height = 390
                              '368
     Selection. Top = 40
236
                             '64
237
238
     ' sets minimums and maximum for date and depth axes
239
240
     ActiveChart.Axes(xlCategory).Select
                                          'work on date axis
241
     With ActiveChart.Axes(xlCategory)
242
243
      If isMinDate Then
```

```
244
        .MinimumScale = MinDateAxis
245
       Else
        minYear = "01/01/" & minYear
246
247
        minYear = DateValue(minYear)
248
        .MinimumScale = minYear
249
       End If
250
       If isMaxDate Then
251
        .MaximumScale = MaxDateAxis
252
       Else
253
        max Year = "01/01/" & (max Year + 1)
254
        maxYear = DateValue(maxYear)
255
        .MaximumScale = maxYear
256
       End If
257
        .MajorUnitIsAuto = True
258
259
     .MinorUnitIsAuto = True
260
     .Crosses = xlAutomatic
261
     .ReversePlotOrder = False
     .ScaleType = xlLinear
263
     .DisplayUnit = xlNone
264 End With
265
266 ' 10 point labels and formatted date
     Selection.TickLabels.AutoScaleFont = False
268
     With Selection. TickLabels. Font
        .Name = "Univers 57 Condensed" "Arial"
269
270
        .FontStyle = "Regular"
271
        .Size = 10
272
        .ColorIndex = xlAutomatic
273
        .Background = xlAutomatic
274
     End With
     Selection.TickLabels.NumberFormat = "[$-409]mmm-yy;@"
275
276
277
     With ActiveChart.Axes(xlValue)
     ActiveChart.Axes(xlValue).Select 'work on depth axis
278
279
280
       If isMinDepth Then
281
        .MinimumScale = MinDepthAxis
282
       Else
283
        .MinimumScale = Application.WorksheetFunction.RoundDown(minDepth, -1)
284
       End If
285
       If isMaxDepth Then
286
        .MaximumScale = MaxDepthAxis
287
288
        .MaximumScale = Application.WorksheetFunction.RoundUp(maxDepth, -1)
289
290
        .MajorUnitIsAuto = True
291
292
     If isDepthtoWater Then
293
294
     .MinorUnitIsAuto = True
                              'if the data is in depth to water, then reverse the order of the depth axis and have
```

```
date axis cross at maximum
295
     .Crosses = xlMaximum
296 .ReversePlotOrder = True
297
     .ScaleType = xlLinear
298
     .DisplayUnit = xlNone
299
300
     ElseIf isWaterElevation Then
301
302
     .MinorUnitIsAuto = True
                                'if the data is water altitude, keep order and have date axis cross automatically
303
     .Crosses = xlAutomatic
304
     .ReversePlotOrder = False
305
     .ScaleType = xlLinear
306
     .DisplayUnit = xlNone
307
308
     End If
309
310
311
     End With
312
313
314
315 ' 10 point labels and formatted depth
     Selection.TickLabels.AutoScaleFont = False
317
     With Selection.TickLabels.Font
318
        .Name = "Univers 57 Condensed" "Arial"
319
        .FontStyle = "Regular"
320
        .Size = 10
321
        .ColorIndex = xlAutomatic
322
        .Background = xlAutomatic
323
324
     Selection.TickLabels.NumberFormat = "0"
325
326
327'12 point axes titles
328 ActiveChart.Axes(xlValue).AxisTitle.Select
329
     Selection.AutoScaleFont = True
330
     With Selection.Font
        .Name = "Univers 57 Condensed" "Arial"
331
332
        .Size = 12
333
        .ColorIndex = xlAutomatic
334
        .Background = xlAutomatic
335 End With
336
     ActiveChart.Axes(xlCategory).AxisTitle.Select
337
     Selection.AutoScaleFont = True
338
     With Selection.Font
        .Name = "Univers 57 Condensed" "Arial"
339
340
        .Size = 12
341
        .ColorIndex = xlAutomatic
342
        .Background = xlAutomatic
343
     End With
344
```

```
346'-----'
347 'sets gridlines of chart
348 With ActiveChart.Axes(xlCategory)
       .HasMajorGridlines = True
350
       .HasMinorGridlines = False
351 End With
    With ActiveChart.Axes(xlValue)
353
       .HasMajorGridlines = True
354
       .HasMinorGridlines = False
355 End With
356
357 'make gridlines gray
358 ActiveChart.Axes(xlCategory).MajorGridlines.Select
359 With Selection.Border
360
       .Color = RGB(192, 192, 192)
361'
                         '25% gray 24=less gray
       .ColorIndex = 15
362
       .Weight = xlHairline
363
       .LineStyle = xlContinuous
364 End With
365 ActiveChart.Axes(xlValue).MajorGridlines.Select
366
    With Selection.Border
       .Color = RGB(192, 192, 192)
367
        .ColorIndex = 15 '25% gray
368'
                                    24=less gray
369
       .Weight = xlHairline
370
       .LineStyle = xlContinuous
371 End With
372
373 ' add border around chart
374 ActiveChart.ChartArea.Select
375 With Selection.Border
376
       .ColorIndex = 1
377
       .Weight = xlThin
378
       .LineStyle = xlContinuous
379
     End With
380
381
382 '------
383 'sets properties of single-point data series (for legend)
    ActiveChart.SeriesCollection(1).Select
385 With Selection
386
       .MarkerBackgroundColorIndex = 11 'markers are size 5 blue diamonds
387
       .MarkerForegroundColorIndex = 11
388
       .MarkerStyle = xlDiamond
389
       .Smooth = False
390
       .MarkerSize = 5
       .Shadow = False
391
392 End With
393 With Selection.Border
394
       .LineStyle = xlNone
395 End With
```

```
396
397
     'sets properties of ALL-data series (make all data dashed)
      ActiveChart.SeriesCollection(2).Select
398
399
      With Selection.Border
                                    'ALL data has a dashed line between points
        .ColorIndex = 11
400
        . Weight = xlThin
401
402
        .LineStyle = xlDot
403
      End With
404
405
      With Selection
406
        .MarkerBackgroundColorIndex = 11 'markers are size 5 blue diamonds
407
        .MarkerForegroundColorIndex = 11
408
        .MarkerStyle = xlDiamond
409
        .Smooth = False
410
        .MarkerSize = 5
411
        .Shadow = False
412
      End With
413
414
     'sets properties of observations less than 1 year apart (solid line)
415
      If nNewSeries > 0 Then
416
      For i = 3 To (nNewSeries + 2)
417
      ActiveChart.SeriesCollection(i).Select
418
      With Selection.Border
                                    ' observations < 1 year apart have a solid line over the dashed line
419
        .ColorIndex = 11
420
        .Weight = xlThin 'xlMedium for thicker line
421
        .LineStyle = xlContinuous
422 End With
423
424
     With Selection
        .MarkerBackgroundColorIndex = 11 'markers are size 5 blue diamonds
425
        .MarkerForegroundColorIndex = 11
426
427
        .MarkerStyle = xlDiamond
        .Smooth = False
428
429
        .MarkerSize = 5
430
       .Shadow = False
431 End With
432 Next i
     End If
433
434
435
437
438 '------
439
440 'add text box with site ID
441
442
       ActiveChart.ChartArea.Select
443
       ActiveChart.Shapes.AddLabel(msoTextOrientationHorizontal, 90#, 5, 150, 10).Select '(Orientation, Left, Top,
      Width, Height)
444
        Selection.ShapeRange(1).TextFrame.AutoSize = msoTrue
        Selection.Characters.Text = "Site ID: " & SiteID
445
```

```
Selection.AutoScaleFont = False
     With Selection. Characters. Font
447
        .Name = "Univers 57 Condensed" "Arial"
448
449
        .Size = 9
450
        .ColorIndex = xlAutomatic
451
     End With
452
     With Selection.Characters(Start:=1, Length:=7).Font
453
        .FontStyle = "Bold"
454 End With
455
456 'add text box for well name
457
        ActiveChart.ChartArea.Select
458
       ActiveChart.Shapes.AddLabel(msoTextOrientationHorizontal, 90#, 20, 150, 10).Select '(Orientation, Left, Top,
     Width, Height)
459
     Selection.ShapeRange(1).TextFrame.AutoSize = msoTrue
     Selection.Characters.Text = "Well Name: " & wellNameText
     Selection.AutoScaleFont = False
     With Selection.Characters.Font
462
463
        .Name = "Univers 57 Condensed" "Arial"
464
        .Size = 9
465
        .ColorIndex = xlAutomatic
466
     End With
     With Selection.Characters(Start:=1, Length:=9).Font
467
        .FontStyle = "Bold"
468
469
     End With
470
471
     'add text box for longitude of well
472
        ActiveChart.ChartArea.Select
473
        ActiveChart.Shapes.AddLabel(msoTextOrientationHorizontal, 250#, 5, 150, 10).Select
474
        Selection.ShapeRange(1).TextFrame.AutoSize = msoTrue
475
        Selection.Characters.Text = "Longitude: " & Left(wellLong, 11)
476
        Selection.AutoScaleFont = False
477
        With Selection.Characters.Font
478
        .Name = "Univers 57 Condensed" '"Arial"
479
        .Size = 9
480
        .ColorIndex = xlAutomatic
     End With
481
     With Selection.Characters(Start:=1, Length:=9).Font
483
        .FontStyle = "Bold"
484
     End With
485
486
     ' add text box for latitude
     ActiveChart.Shapes.AddLabel(msoTextOrientationHorizontal, 250#, 20, 150, 10).Select
488
     Selection.ShapeRange(1).TextFrame.AutoSize = msoTrue
     Selection.Characters.Text = "Latitude: " & Left(wellLat, 11)
489
490
     Selection.AutoScaleFont = False
491
     With Selection. Characters. Font
492
        .Name = "Univers 57 Condensed" "Arial"
493
        .Size = 9
494
        .ColorIndex = xlAutomatic
495 End With
```

```
496
497
     With Selection.Characters(Start:=1, Length:=8).Font
498
        .FontStyle = "Bold"
499
     End With
500
501 'add text box for altitude of land surface
     ActiveChart.ChartArea.Select
     ActiveChart.Shapes.AddLabel(msoTextOrientationHorizontal, 410#, 5, 250, 10).Select
504
     Selection.ShapeRange(1).TextFrame.AutoSize = msoTrue
505
     Selection. Characters. Text = "Altitude of Land Surface: " & wellAlt & " [ft AMSL]"
506
     Selection.AutoScaleFont = False
507
     With Selection.Characters.Font
        .Name = "Univers 57 Condensed" "Arial"
508
509
        .Size = 9
510
        .ColorIndex = xlAutomatic
511
     End With
512
513
     With Selection.Characters(Start:=1, Length:=24).Font
514
        .FontStyle = "Bold"
     End With
515
516
517
518 'add text box for well depth
519
     ActiveChart.Shapes.AddLabel(msoTextOrientationHorizontal, 410#, 20, 150, 10).Select
520
     Selection.ShapeRange(1).TextFrame.AutoSize = msoTrue
521
     Selection.Characters.Text = "Well Depth: " & wellDepth & " [ft]"
522
     Selection.AutoScaleFont = False
523
     With Selection.Characters.Font
524
        .Name = "Univers 57 Condensed" "Arial"
525
        .Size = 9
526
        .ColorIndex = xlAutomatic
527
     End With
528
529
     With Selection.Characters(Start:=1, Length:=10).Font
530
        .FontStyle = "Bold"
     End With
531
532
533 '-----ADD USGS LOGO AND "CREATED ON" DATE TO CHART HEADER-----
534
535 'Add header information
536
537 'ActiveSheet.PageSetup.LeftHeaderPicture.Filename = "D:\Shared\Graphics\USGS(green) for header.tif"
     'uncomment this line and insert path and filename for graphic file
538
     With ActiveChart.PageSetup
539
        .LeftHeader = "&G"
540
        .CenterHeader = ""
        .RightHeader = "&8Created on &D"
541
        .LeftFooter = "&G"
542
543
        .CenterFooter = ""
544
        .RightFooter = "&G"
545
        .LeftMargin = Application.InchesToPoints(0.5)
```

```
546
        .RightMargin = Application.InchesToPoints(0.5)
547
        .TopMargin = Application.InchesToPoints(0.8)
548
        .BottomMargin = Application.InchesToPoints(0.5)
549
        .HeaderMargin = Application.InchesToPoints(0.17)
550
        .FooterMargin = Application.InchesToPoints(0.2)
551
        .ChartSize = xlFullPage
552°
        .PrintQuality = 1200
553
        .CenterHorizontally = False
554
        .CenterVertically = False
555
       .Orientation = xlLandscape
556
       .Draft = False
557
       .PaperSize = xlPaperLetter
558
       .FirstPageNumber = xlAutomatic
       .BlackAndWhite = False
559
560
       .Zoom = 100
     End With
561
562
563
565 Application.StatusBar = False
566 Application.ScreenUpdating = True
567
568
569 Charts(chartName). Activate
570
571
     xyzRow = xyzRow + 1
572
573
     allRowStart = allRowEnd + 1
574
575 '-----
576 '-----
577 'After multiples of 50 charts.....
578
579 If xyzRow = 51 Then
580
581 'save current workbook
582 ActiveWorkbook.Save
583
584 'close the workbook unless it's the original data workbook
585 If wkbookNum > 1 Then
586 ActiveWorkbook.Close SaveChanges:=True 'ThisWorkbook.Close SaveChanges:=True
587 End If
588
589 'open a new workbook for next 50 charts
590 wkbookNum = wkbookNum + 1
591
     Set NewBook = Workbooks.Add
592 fileSaveName = Application.GetSaveAsFilename("MyFileName.xlsx", "Excel files,*.xlsx", 1,
     "Select the folder and workbook name for next set of charts")
593 ActiveWorkbook.SaveAs Filename:=fileSaveName
594
```

595 Application.SheetsInNewWorkbook = 1

```
596 Sheets("Sheet1").Select
597 Sheets("Sheet1").Name = "Information"
598 Worksheets("Information").Cells(1, 1).Value = "Chart data is linked to " & dataWorkbookName & " workbook"
599
600 currentWorkbookName = ActiveWorkbook.Name
601
602 'open a new worksheet to contain <= 1-year observation data for plotting
603 SolidLineData = "SolidLineData" & wkbookNum
604 Set NewSheet1 = Worksheets.Add
605 NewSheet1.Name = SolidLineData
606 Sheets(NewSheet1.Name).Move After:=Sheets(Worksheets.Count)
607 Worksheets(SolidLineData).Cells(1, 1).Value = "Date"
608 Worksheets(SolidLineData).Cells(1, 2).Value = "WL Depth/Altitude"
609 Worksheets(SolidLineData).Cells(2, 1).Value = 33556
                                                       'dummy data
610 Worksheets(SolidLineData).Cells(2, 2).Value = 100
611
612
613 waitTime = TimeSerial(Hour(Now()), Minute(Now()), Second(Now()) + 3)
614 Application. Wait wait Time
615
616 \text{ xyzRow} = 1
617 localRowCounter = 2
                                             'this is the row on the new worksheet
618
619 End If
620
621
622 Workbooks(dataWorkbookName). Worksheets(allDataSheet). Activate
624 Loop
            ' big loop to do each chart
625 '-----
626 '-----
627
628 '-----
629 endTime = Timer
630 elapsedTimeSeconds = endTime - startTime
631 If elapsedTimeSeconds < 0 Then
632 elapsedTimeSeconds = (86400 - startTime) + endTime
633 End If
634 If elapsedTimeSeconds >= 60 Then
635 elapsedTime = elapsedTimeSeconds / 60
636 units = "minutes"
637 Else
638 elapsedTime = elapsedTimeSeconds
639 units = "seconds"
640 End If
641 MsgBox "makeExcelHydrographs program ended. Elapsed time " & Format(expression:=elapsedTime,
    Format:="Standard") & units
642
```

643 End Sub

makePDFfromChart

```
1
   Sub makePDFfromChart()
   Dim PDFfileName As String, dataPath As String
   Dim chartNum As Integer
   If Dir(Environ("commonprogramfiles") & "\Microsoft Shared\OFFICE"
5
       & Format(Val(Application. Version), "00") & "\EXP PDF.DLL") <> "" Then
                                                                               'first test to make sure Excel
   PDF creator is installed
8
9
     dataPath = BrowseForFolder("D:\Shared\Ground Water Availability\FY09")
                                                                                      'get path for
   location of hydrographs
10
11
    'loop through charts one at a time
12
     chartNum = 1
13
14
     Do While (chartNum) <= Charts.Count
15
16
      Charts(chartNum). Activate
      PDFfileName = dataPath & "\" & Charts(chartNum).Name & ".pdf"
17
18
19
      ActiveSheet.ExportAsFixedFormat Type:=xlTypePDF, Filename:=
20
        PDFfileName, Quality:=xlQualityStandard, IncludeDocProperties:=True, IgnorePrintAreas
21
        :=False, OpenAfterPublish:=False
22
23
      chartNum = chartNum + 1
24
     Loop
25
26
    MsgBox "Hydrographs exported to " & dataPath
27
28 Else
29
       MsgBox "PDF add-in Not Installed - Visit http://www.microsoft.com/downloads"
30 End If
31
32 End Sub
33
34 Function BrowseForFolder(Optional OpenAt As Variant) As Variant
35
36
37
      Dim ShellApp As Object
38
39
      'Create a file browser window at the default folder
40
      Set ShellApp = CreateObject("Shell.Application").
41
      BrowseForFolder(0, "Select a folder to save pdfs", 0, OpenAt)
42
43
      'Set the folder to that selected.
44
      On Error Resume Next
45
      BrowseForFolder = ShellApp.self.Path
46
      On Error GoTo 0
47
```

```
48
      Set ShellApp = Nothing
49
50
      'Valid selections can begin L: (where L is a letter) or \\ (as in \\servername\\sharename. All others are invalid
51
      Select Case Mid(BrowseForFolder, 2, 1)
52
      Case Is = ":"
        If Left(BrowseForFolder, 1) = ":" Then GoTo Invalid
53
54
      Case Is = "\"
        If Not Left(BrowseForFolder, 1) = "\" Then GoTo Invalid
55
56
      Case Else
57
        GoTo Invalid
58
      End Select
59
60
      Exit Function
61
62 Invalid:
63
      'If it was determined that the selection was invalid, set to False
64
      BrowseForFolder = False
65
```

66 End Function